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1 Summary 
 

The University of Southern California / Information Sciences Institute (USC/ISI) conducted 

exploratory studies to establish the need for and the value of innovative research on domain-

specific architectures, applications, and tools based on the challenges posed by computational 

bottlenecks in DoD applications. The study was driven by key representative applications that 

are limited in performance by current computing performance and tool chains.  

 

The initial study was to evaluate the performance of domain-specific architectures. To 

evaluate domain-specific architectures, USC/ISI has developed performance and chip area 

estimation tools. These tools allowed us to estimate the performances for various chip designs 

for different kernels and an application. The experimental results showed that different 

application kernel characteristics and applications demand different processor architectures. 

Therefore, a general-purpose processor cannot meet all the different processing requirements 

in different domains. Thus, for different application domains, different architectures fitting the 

processing requirements in the domain can achieve performance that is not achievable by 

general-purpose processors.  

 

The second part of the study was on emulation systems. We evaluated existing emulation 

systems first and then proposed an emulation system that can address DoD needs, such as 

security and the need to support tools specific to DoD applications. The emulation system 

provides orders of magnitude faster emulation speed compared to software simulation. The 

emulation system uses field programmable gate arrays (FPGAs) for various architectures with 

a flexible software stack to accommodate a wide range of DoD applications, processors, and 

systems. 

 

Evaluation systems are needed for any newly developed processor to ensure design validity 

and to support software development until hardware is available. We propose flexible 

evaluation boards for three new processor approaches: structured ASICs, patterned ASICs, 

and automatically generated ASICs. These proposed evaluation systems could be made 

specific to different applications by populating different configurations on the board to cope 

with different application environments. 

 

Based on the evaluation board research, we also propose an automatic board generator tool. 

The board generator automates manual board design tasks for related chip designs by 

exploiting templates and standard interfaces. but the primary benefits are also reduced 

development time and increased reliability, along with cost reduction. 

 

A third part of the study was on design patterns. Application performance, especially on 

parallel systems, can be very different depending on the quality and experience of 

programmers. One way to increase the quality of a novice programmer’s code is by using 

design patterns. The design pattern is a description of an approach that programmers use to 

learn how to write programs that are likely to map well to parallel architectures. In this study, 

we evaluated the potential benefits of research on design patterns for DoD applications by 

applying design patterns to exemplary kernels. The study shows both that DoD could benefit 
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from design patterns and that there are DoD-specific needs that are not addressed by current 

design patterns that could be addressed through additional research.  

 

A fourth part of the study was on domain-specific languages. Domain-specific languages, 

such as SQL and MATLAB, have been used widely in many domains successfully.  These 

domains are highly productive due to the many advantages of domain-specific languages, 

such as proper abstractions of problems. In this study, USC/ISI conducted a study on domain- 

specific language to identity potential benefits for DoD applications. As an example, USC/ISI 

developed a straw-man signal processing language targeting DoD signal processing 

applications. USC/ISI also implemented an application called complexity ambiguity function 

(CAF) using the proposed language and demonstrated the potential benefits of the domain- 

specific language.  
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2 Introduction 
 

Since the introduction of the first microprocessor, general-purpose processors have been used 

widely for most computing applications. However, in some applications and domains, the 

general-purpose processors do not meet computing demands. For example, graphics 

processing and signal processing often need much more powerful or efficient computation 

capabilities than general-purpose processors can provide. At the same time, some features 

provided by general-purpose processors are unnecessary in specific domains. Therefore, many 

domain-specific processors, such as GPUs and DSPs have been developed for graphic 

processing and signal processing, respectively, and are widely used.  

 

In this work, we have conducted a series of studies on the architectures, systems, tools, and 

languages in domain-specific areas. To study the domain-specific architectures, we first 

surveyed and selected four key representative kernels and applications. The chosen kernels 

and applications are matrix multiplication, FFT, object detection, and neural networks. 

 

With the chosen kernels and applications, we designed domain-specific architectures. First, 

we designed models for chip area and application performance. Then, with the models, we 

searched the design space for high performance for each application to show how domain-

specific architectures should be designed to best fit the target domains. 

 

When a new processor with a domain-specific architecture is being developed, it needs to be 

simulated or emulated to verify that the new design is bug-free. Due to the slow speed of 

accurate simulation, emulation is used in many cases to expedite the design process. In this 

study, we evaluated commercial FPGA evaluation boards and commercial emulation systems. 

Commercial evaluation systems are usually too small to emulate a new processor and its 

system. Commercial emulation systems are expensive and have limited flexibility.  

 

When a new processor is manufactured, the new processor needs to be tested on an evaluation 

board. The proposed evaluation board design assumes a template with some common pin 

layouts such as power pins for reliable design. However, it also supports some flexible pin 

layouts such as memory interface pins to accommodate different architecture characteristics. 

Moreover, the board design can be used for multiple application areas. For example, if an 

application is a memory-intensive application, it can be configured with a large memory. If an 

application is I/O intensive, the board can be configured for many I/O interfaces. 

 

Traditional board design involves a human design phase especially in the schematic capture 

and place and route (PAR) stages. Since most schematic capture is done manually, the design 

cost is high and error-prone and lead times are long. The cost of errors can be very high, 

especially in lost design time, lost opportunities in the market, and delayed deployment to the 

warfighter. We have conducted a study to investigate issues related to an automatic board 

generator tool. Based on our study, we propose a design tool called a board generator that 

automates the process of designing a board. The board generator can be developed for boards 

that can house various types of new or old processors.  
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There are big differences in quality of codes between programmers, which stem from 

practical knowledge and skill. When a program needs to be written, programmers often need 

to develop or choose a programming approach, which may not be suitable for the target 

application. Sometimes, after a long coding time, the programmer discovers the approach’s 

limitations and will need to start again.  

 

However, high-productivity programmers learn programming methods and techniques 

through past successes and failures. With this experience, the programmer will know the 

appropriate programming approach and can finish a high quality code in a short development 

time with decreased risk. Design patterns are one way of helping more programmers to write 

like productive programmer, which is especially important for the parallel programming 

required to leverage the potential performance improvements of multi-core processors. Design 

patterns provide a tested and proven approach. A design pattern is a documented approach to 

writing a program for a specific problem type. A pattern description typically consists of 

several sections. The ―problem‖ section describes the problem. The ―forces‖ section describes 

a trade-off in various approaches. And the  ―solution‖ section describes how to program the 

pattern. 

 

In our study, we have evaluated the use of design patterns for DoD applications using matrix 

multiplication. 

 

In the application development process, one important tool is the programming language. 

There are many general-purpose programming languages such as C and FORTRAN that are 

widely used in application development. However, in some domains such as database 

processing, general-purpose languages do not meet the programming needs in specific 

domains. Therefore, several domain-specific languages have been designed and used 

intensively in those domains. For example, in database management, SQL is mainly used to 

create, update, and delete records in a database. Using any other general-purpose language is 

not as efficient as SQL. At the same time, using SQL for another purpose is not efficient, 

since the SQL is a domain-specific language for database management only. 

 

In this work, we studied the possibility of using a  domain-specific language for DoD 

applications. First, we identified an area that has an inadequate language for DoD applications 

and proposed a straw-man  domain-specific language for the domain. We selected the signal 

processing area, which is used widely in DoD applications. Currently, there are a few 

commonly used languages for the signal processing applications. For example, the C language 

is widely used in the area to obtain high performance. However, the C language is a general-

purpose language, and uses a much lower level of abstraction than signal processing domain 

experts typically work in. 

 

To study the potential benefits of having a domain-specific language in the signal processing 

domain, we designed a straw-man domain-specific language. The domain language covers 

many signal processing related constructs. To demonstrate the use of the language and the 

potential benefits of the proposed language, we implemented a signal processing application 

called complex ambiguity function using the proposed language. Also, the implementation is 

compared with other language approaches.  
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The rest of this report is organized as follows. In section 3, the methods, assumptions, and 

procedures used in the work are described. In section 4, the results obtained from the work are 

described in detail. Section 5 concludes the work, and section 6 describes recommendations. 
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3 Methods, Assumptions, and Procedures 
In this section, we discuss methods, assumptions, and procedures used for our study.  

3.1 Multi-core Domain-specific Architecture 

In this section, the multi-core  domain-specific architecture study is discussed. We discuss 

kernels and an application used in this study followed by a detailed discussion.  

3.1.1 Kernels and an Application Considered in this Study 

We considered three kernels and one application. The three kernels are matrix multiplication, 

FFT, and object detection. The one application considered is neural network. 

 

Matrix multiplication is frequently used in many real-world applications including DoD 

embedded signal processing applications. We considered implementing a matrix 

multiplication using a commonly known technique--blocked matrix multiplication, which 

reduces off-chip data transfers. The partitioning is done on the output matrix, and each core 

computes its own data. 

 

FFT is another commonly used kernel in many applications to transform data in the time 

domain to the frequency domain and back [32]. We considered the conventional radix-2 FFT 

with complex floating-point numbers. Each core processes its own data set in parallel. 

 

Object detection detects target objects from input images. We used the Viola-Jones’s 

algorithm [38] to find an object of pre-defined class in a static image or video frame. The call 

graph for the algorithm is shown in Figure 1.  
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Figure 1. Object detection call graph 

 

Viola-Jones is a robust and state-of-the-art algorithm where feature extraction is done using 

Haar-like features. Feature selection/classification is done using a variation of the AdaBoost 

learning method [8], which selects a small number of critical visual features and yields an 

extremely efficient feature selector/classifier. A multi-scale detection algorithm combines 

classifiers in a cascade, which allows background regions of the image (typically 1000 times 

as many non-faces as faces in an image) to be quickly discarded while spending more 

computation on promising object-like regions. 

 

We analyzed the performance data collected for the algorithm using the Intel VTune 

Performance Analyzer [9]. It showed that out of all the functions called by the algorithm, the 

cvRunHaarClassifierCascade function consumed more than 90% of the total execution time. 

We studied and analyzed this most important function in detail. Figure 2 shows the data flow 

diagram for this function. The diagram shows the cascade structure of computations. 
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Figure 2. Object detection data flow diagram 

 

One application we considered was a neural network that uses the adaptive resonance theory 

(ART) algorithm [12]. It is used in a wide spectrum of applications including satellite remote 

sensing, automatic target recognition, and radar processing.  

 

ART self-organizes stable pattern recognition codes in real-time in response to arbitrary 

sequences of input patterns. ART2 systems [12] have a pattern matching process that 

compares an external input with the internal memory of an active code. This matching leads 

either to a resonant state, which persists long enough to permit learning or to a parallel 

memory search.  If the search ends at an established code, the memory representation may 

either remain the same or incorporate new information from matched portions of the current 

input.  If the search ends at a new code, the memory representation learns the current input. 

 

 

Data Flow diagram for cvRunHaarClassifierCascade:  “j” loops
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Figure 3. ART2 neural network block diagram 

 

Figure 3 shows the block diagram for the ART2 neural network. Field F0 is for input 

transformation and the two fields F1 and F2 are for a feature representation and a category 

representation. 
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Figure 4. ART2 F0 block diagram 

 

Figure 4 shows the F0 block diagram. It consists of element-wise operations (floating-point 

multiplications and additions). It has L elements, where L is the length of each input. For our 

data sets, we have the value of L range from 8 to 30,000. 

 

X0 1 2 L…

V0 1 2 L…

Q0 1 2 L…

U0 1 2 L…

P0 1 2 L…

I 1 2 L…
File

W0 1 2 L…
× 1 / (e + |W0|2)

sigmoid(X0, θ)

b × sigmoid(Q0, θ)

× a

× 1 / (e + |P0|2)

× 1 / (e + |V0|2)

W1 1 2 L… R 1 2 L…

F0
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Figure 5. ART2 F1 block diagram 

 

F1, which has an identical structure to F0, is shown in Figure 5. It has element-wise local 

communication with F0. So to avoid communication between processing elements (PEs), F0 

and F1 are computed on the same PE. 

 

 

Figure 6. ART2 F2 loop 

 

The main compute loop for F2 is shown in Figure 6. It has N processing elements (N ranges 

from 12 to 1600). Each PE gets inputs from all L F1 PEs. Thus, an efficient broadcast is 

required. 

 

X1 1 2 L…

V1 1 2 L…

Q1 1 2 L…

U1 1 2 L…

P1 1 2 L…

W1 1 2 L…

× 1 / (e + |W1|2)

sigmoid(X1, θ)

b × sigmoid(Q1, θ)

× a

× 1 / (e + |P1|2)

× 1 / (e + |V1|2)

R 1 2 L…

× c

P0 1 2 L…

F1

F2
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3.1.2 Performance Model 

In this section, we discuss an area estimation model and performance models to do a tradeoff 

study to find an high-performance processor design. Using the models, we estimated the 

performance for three kernels and one application. 

 

The area estimation and performance models consider several factors, such as number of 

cores, vector size, and cache sizes. The area estimation model estimates the chip area needed 

for a given set of architectural components such as caches and FPUs. Performance models 

estimate the peak performance for each kernel and application. Although peak performance is 

usually much higher than real-world performance, it provides upper bounds, which we use for 

trade-off analysis in the early stages of architecture design. The parameters used in the 

equations are defined as follows: 

  

m: number of cores 

U: CPU area 

C: cache area per word  

c: cache size in words 

F: FPU area 

f: 1 if FPU exists, 0 otherwise 

M: complex FPU area. The complex FPU computes a complex computation with a single 

instruction. 

p: 1 if complex FPU exists, 0 otherwise 

v: vector length 

t: 1 if stream unit exits, 0 otherwise. With a stream unit, data read or write operations are 

initialized in a similar way to DMA. Then, the data is read or received continuously using a 

register.  

S: stream unit area 

X: switch processor area (bandwidth independent part). The switch processor acts like a DMA 

engine for communication. After initialization is done it takes on the task of inter-core data 

transfer, so that the CPU can continue its computation task. 

b: on-chip network width in words 

Y: switch processor area per word (bandwidth dependent part) 

W: network area per unit length 

w: off-chip memory interface width in words 

D: off-chip memory controller space per word 
 

The area estimation model is shown below. 

 



area m U Cc  fF Mp v  tS X bY 2bW U Cc  fF Mp v  tS X bY wD 

 

The area model estimates the overall space by multiplying the number of cores with the area 

for a core. The core area includes all features in a core, such as local memory and functional 

units. Area for a unit that manages off-chip data transfers is also included. 
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Generally, the performance model is based on the maximum of the arithmetic computation 
time, data transfer time from and to off-chip memory and other cores, and load/store times. 
However, each performance model is different from each other since they have different 
characteristics in computation time, load/store time, and data transfer time.  
 
The number of execution cycles for matrix multiplication is shown below. 
 

The first term is the number of cycles using the peak computation performance. We assumed 
that software floating-point computation takes ten times the hardware execution time that is 
reflected in the equation (1+9(1-f)). There are N3 floating-point operations, and the number of 
execution cycles is N3/(vm).  
 
The second term is for off-chip data transfer time. The dividend is the amount of data to be 
transferred from and to off-chip memory. The divisor is the off-chip bandwidth. Thus, the 
second term is the number of cycles to transfer data from and to off-chip memory. 
The third term is the number of cycles to execute load and store operations. If there is a 
streaming hardware, the load/store cost is almost zero, which is reflected in the (1-t) term. The 
dividend, except the (1-t) term, is the number of load and store operations. Since the data is 
distributed to cores, the cost is divided by the number of cores. 
 
The number of execution cycles for FFT is shown below: 
 

 
Since each core computes its own FFT, the execution times for all cores are the same. Thus, 
the execution model computes the execution cycles for a core. The first term is the number of 
cycles using the peak computation performance. There are 5N lg(N) floating-point operations. 
In the divisor, (1+7p/3) reflects the performance boost from the complex computation unit. 
With the complex computation unit, the performance is improved by 3.33 times. 
 
The second term is for off-chip data transfer time. The dividend is the amount of data to be 
transferred from and to off-chip memory, i.e., input and output data. The divisor is off-chip 
bandwidth. Thus, the second term is the number of cycles to transfer data from and to off-chip 
memory. 
 
The third term is the number of cycles to execute load and store operations. If there is 
streaming hardware, the load/store cost is almost zero, which is reflected in the (1-t) term. 
Then is the number of loads and stores in a butterfly. In a butterfly, ten data elements need to 
be loaded and stored, i.e., real and imaginary components for two input elements, real and 
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imaginary components for two output data elements, and real and imaginary data  elements 

for a twiddle factor. There are N lg(N)/2 butterflies in FFT.  

 

The number of execution cycles for object detection is shown below. 

 

 

The first term is the number of cycles using the peak computation performance. There are 

1,555,200 floating-point operations per input data. In the divisor, the product of v and m are 

used to calculate the number of cycles since the computations are distributed to cores evenly. 

 

The second term is for off-chip data transfer time. The dividend is the amount of data to be 

transferred from and to off-chip memory. Note that g(x) determines whether or not the whole 

input data fits in cache. If data does not fit in cache, the data needs to be transferred many 

times. The amount of the data transfer is divided by the off-chip bandwidth to provide the 

number of cycles to transfer data from and to off-chip memory. 

 

The third term is the number of cycles to execute load and store operations. If there is 

streaming hardware, the load and store cost is almost zero, which is reflected in the (1-t) term. 

The dividend, except the (1-t) term is the number of load and store operations. Since the data 

is distributed to the cores, the cost is divided by the number of cores. 

 

 

The number of execution cycles for the neural network application is shown below: 

 

Since each core computes its own neural network, the execution times for all cores are the 

same as in the FFT. The first term is the number of cycles using the peak computation 

performance. There are (1064.5+L)NL floating-point operations. The number of floating-point 

operations is divided by v to provide the number of cycles to compute the floating-point 

operations. 

 

The second term is for off-chip data transfer time. The dividend, mNL, is the amount of data 

to be transferred from and to off-chip memory. 

 

The third term is the number of cycles to execute load and store operations. There are 143NL 

load and store operations in each core. 
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3.2 Emulation Board 

When a new processor is developed, the cost of manufacturing a processor is very high, and 

the new architecture goes though a simulation process to minimize the bugs in the design. 

However, the speed of the simulation is very slow, i.e., thousands of times or more. 

Therefore, there is interest in using FPGAs to emulate the processor for fast verification of the 

design.  

 

We evaluated vendor-supplied evaluation boards with FPGAs. The study results are shown in 

Section 4. 

 

We also proposed emulation systems for DoD, particularly for structured ASICs, patterned 

ASICs, and the chip generator. Although these emulation systems are targeted for chips 

designed using constrained tools for special-purpose architectures, the emulation systems can 

accommodate any processor or system. The proposed designs are shown in Section 4. 

3.3 Evaluation Board 

When a chip is developed, it needs to be tested on an evaluation board. In this study, we 

designed a high-level emulation board design. To accommodate multiple different chips, we 

designed a board with flexibility, which comes from using FPGAs and a flexible memory 

interface. FPGAs provide flexibility by providing programmable interconnections and glue 

logic. 

 

We also considered configuration for different applications. Some applications need more 

memory while others need more I/O capability. Our high-level design can be configured 

differently for different applications. The high-level design is shown in Section 4. 

 

3.4 Board Generator 

 

When a processor is manufactured, it needs to be tested on an evaluation and development 

boards. Traditionally, these boards have been designed and manufactured in four steps: 

schematic capture, place and route (PAR), board manufacturing, and assembly. The two last 

steps, related to manufacture of the board, are outside the scope of this project. The first two 

steps are not fully automated, especially schematic capture. Instead, they are more labor 

intensive and are error-prone and cost additional funding and delay. Manual modification, 

often used to fix design errors, requires human intervention and can reduce performance. 

Modern complex boards have many layers and small component contacts, making manual 

rework difficult or impossible. 

 

In this study, we explored the opportunity to automate the schematic capture and place and 

routing (PAR) steps to design a board quickly with high reliability and performance. 

 

Figure 7 shows the overview of the approach: 
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Figure 7. Overview of board generator 

 

The board generator gets three inputs: target chip description, board feature description, and 

module and part library. The target chip description includes pin layout and power 

requirements.  

 

The board feature description includes user input on the desired board configuration. One 

aspect of the board descriptions is a board form factor. It includes size, shape, and thickness 

of the board. The number of layers may be determined automatically. The board description 

also includes a list of modules and parts. For example, the description can specify one PCIe-8 

and two XAUI interfaces. Another part of the description is location and orientation of 

modules and parts. Not all module and part locations and orientations need to be described. 

However, sometimes, the user wants a precise location for a particular module. For example, 

the user may prefer specific locations for a reset button and or USB interface for easy access.  

 

Connections among modules and parts may need to be specified. Again, not all of them need 

to be described. For example, if there are two parts that need to be connected and there is no 

other possible way, a tool can automatically connect them. However, if there are multiple 

ways of connecting modules, the user must specify exactly how they are connected. Note that 

the user description is expected to be at a high level, and we expect the tool to determine low-

level details. 

 

Some restrictions can be specified. For example, the operating temperature can be specified if 

the selection of parts should consider the operating environment. Another restriction is 

supplied power. If the power is limited, for example, then the tool will try to use low-power 

modules to meet the specification. 
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The tool needs a part library, which is generally available from vendors. However, the target 

chip library and some parts may not be available. These library components must be 

generated manually or by auxiliary tools. The library database for components includes 

information such as chip layout, pin requirement, required external components and circuit 

diagram, connection type, and performance information. 

 

Figure 8 shows the expected flow of the automated board generator. 

 

 
 

Figure 8. Board generator tool flow 

 

There are several automatic decisions made in the tool. The modules and part selections can 

be made automatically. The tool searches modules and parts that fulfill the board design needs 

and also chooses the right combinations.  The module selection needs to consider space 

clearance, power requirement, and performance requirement. Optionally, part cost can be 

considered as well.  

 

While general automatic board design is probably not feasible, in this case, we have 

constrained the problem. Since we are generating designs under a set of limited circumstances 
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and can place limits on the interfaces used by the target chip architectures, we believe that we 

can come up with a parameterizable, design template. The automated design tools can use this 

template to generate board designs. If successful, this tool will facilitate research in special-

purpose designs by reducing the accompanying board design effort and may also lead to a 

stand-alone tool that will be useful in its own right, reducing design time and errors in board 

design. 

3.5 Design Patterns 

 

When applications are developed, the programmer’s experience and programming ability play 

big roles in the resulting code quality. However, this problem can be mitigated if new 

programmers have a way to leverage the methodologies of more skilled programmers. Design 

patterns provide an approach to facilitate this. The design pattern is a description of an 

approach that programmers use to learn how to write programs that are likely to map well to 

parallel architectures. A design pattern is described in simple terms so a less skilled 

programmer can used the more skilled programmer’s pattern as a template. We show matrix 

multiplication as an example. 

3.5.1 Introduction 

The advent of multi-/many-core technologies has necessitated the development of new 

programming paradigms and tools as well as architectures. These new programming models 

and tools must be developed with two primary goals: achieving high performance on this new 

class of architectures, and providing a high level of programmability to facilitate software 

development for key applications. 

 

DoD applications present a unique set of demands in both of these areas. DoD applications 

require high performance to support the rapid transformation of large amounts of data into 

usable information by a system user or analyst. Because of form-factor and power 

requirements, DoD systems must achieve high levels of computational efficiency as well as 

absolute performance. Because of the need for robustness, DoD systems require extensive 

system verification prior to deployment. Systems that operate autonomously will also require 

fault-tolerance, dynamic reconfigurability, and run-time resource management. All of these 

system goals must be met within the real-time throughput and latency constraints of the 

system. 

 

The software and programming models for parallel systems must provide this level of 

performance and must also enable high programmer productivity. High programmer 

productivity can be achieved by providing a set of abstractions which then give the 

appropriate functionality and performance to the programmer while isolating him/her from the 

details of the architecture. DoD applications also require machine independence and 

portability to support upgrades in processor technologies without requiring large changes to 

existing software. Finally, software must be scalable to different machine sizes to support 

changing DoD requirements both between applications and within the same application. 

These software requirements have been the long-standing challenge for the parallel computing 

industry, one that is only exacerbated by the arrival of multi- and many-core architectures. 
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Recurring programming patterns in modern software development form the basis for software 

abstractions that can be used to improve programmability of complex architectures [35].  

These same abstractions can also incur costs in performance and efficiency. Patterns in 

programming occur at all levels in the software development process. At the higher levels, 

software architecture patterns such as pipelines, service-oriented architectures, blackboard 

systems, etc., are often employed for their natural suitability to particular applications. At the 

lowest levels, tuning patterns and technology-dependent patterns such as those found in 

compilers and libraries are used to optimize performance on particular kernels and 

computational structures. Between these are patterns for concurrency such as task and data 

decomposition; patterns for algorithmic structures such as task parallelism, divide-and-

conquer, geometric decomposition, and recursion; and patterns for parallel implementations 

such as SPMD, master/worker, loop parallelism, and fork/join. 

 

At any level, there is a tradeoff between high-level programmability and architectural 

performance. These tradeoffs depend on a number of factors, including: the suitability of a 

high-level pattern for a particular application or algorithm, the suitability of a low-level 

pattern for a particular machine architecture, the level of generality provided by the pattern 

(higher levels of generality usually incur more overhead), the method of implementing the 

pattern (patterns implemented using machine primitives will have higher performance than 

those implemented in higher-level languages), and the synergy between the different types of 

patterns that work together to implement an algorithm or application. At any level, there will 

be several different patterns to choose from, each with their own 

performance/programmability trade-off, and each potentially affecting the trade-offs at a 

different level. For example, task parallelism may best suit a particular application, but if the 

software and hardware primitives for task parallelism are not provided in the architecture, 

performance may suffer. Similarly, software and hardware primitives that yield the best 

performance on an architecture may require complex programming and long development 

cycles (which has often been the case in high-performance embedded parallel programming). 

 

This work examined how parallel design patterns can be used on multi-core architectures to 

solve some of the software challenges posed by DoD applications. A specific processing 

kernel, matrix multiplication, and representative architecture, the Tilera TILE64 [5], were 

selected for detailed study. The design patterns used in implementing the kernel on the 

architecture were identified and requirements for abstractions based on the design patterns 

were defined. A prototype set of portable, machine-independent abstractions based on the 

identified design patterns were designed. An implementation of the kernel on the architecture 

based on the design patterns, but parameterizeable for specific instances of the pattern, was 

created. Performance of the generalized version that was consistent with baseline benchmark 

results was demonstrated. Analysis was performed to demonstrate that the prototype 

abstractions contain the information needed to generate the parameterized code. Both the 

existence of DoD application-specific design patterns and the incorporation of DoD 

constraints into the existing design patterns were considered. 
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3.5.2 Matrix multiplication and parallel design pattern 

 

Matrix multiplication was chosen for this study because it is widely used in DoD applications 

and can be implemented using a variety of parallel methods. Many different approaches were 

found in the body of literature on parallel matrix multiplication including Cannon’s algorithm, 

broadcast-multiply-roll, parallel and scalable universal matrix multiplication algorithms, etc. 

The purpose of examining these algorithms was to determine any common elements that 

would be part of a general data distribution scheme; these elements would be candidates for 

inclusion in a generalized data distribution pattern library. 

 

Figure 9 shows the patterns that have been defined for parallel programs [29]. The patterns 

that are relevant to matrix multiplication are indicated. This case study briefly mentions each 

of the relevant patterns and describes the context, and forces and solutions that are specific to 

matrix multiplication. Specific attention is paid to DoD needs for real-time performance, 

portability, maintainability, and high efficiency as required for embedded platforms. 

 

Data Decomposition. Data decomposition is the simplest and most natural choice for matrix 

multiplication since the result matrix can be easily decomposed into chunks that are operated 

on relatively independently. Since matrix multiplication is computationally intensive, there is 

a large potential performance benefit to processing the chunks in parallel. There is a lot of 

flexibility to this type of distribution, since the patterns of data distribution and resulting 

implementations are similar for different chunk sizes, allowing us to choose chunk sizes that 

maximize efficiency without re-thinking the data distribution. Array-based computations like 

matrix multiplication are very common in DoD applications.  

 

However, programming these computations can be challenging and complex if the 

programmer must explicitly manage all array indices and data communications. DoD 

applications would benefit strongly from having both a set of abstractions that allow the 

programmer to specify algorithms and data structures monolithically (i.e., in the aggregate) 

and a set of tools that generate the correct index patterns from those aggregate data structures. 

 

Group and Order Tasks. Each chunk of the result matrix is computed independently, but 

needs as input the correct portions of the two input matrices, i.e., the corresponding column 

block of one matrix and the corresponding row block of the other matrix. Tasks must be 

grouped and ordered according to the sharing of pieces of the input data. These pieces need to 

be moved around or shared between tasks as required by the parallel algorithm. Often, these 

data movements are coded by hand, in complicated programs that are tailored for a particular 

algorithm task decomposition and/or architecture, and are therefore not re-usable or portable. 

Data abstractions for DoD applications must include mechanisms to specify the overlap and 

sharing of data between different chunks in such a manner to be portable between different 

architectures and data sharing methods. 
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Figure 9. Parallel programming patterns: 

 

Data Sharing. The sharing of input data between different tasks can be achieved in several 

ways. One possible way is to replicate and broadcast a row block of the first input matrix on 

all processors which need that row block, and do the same for each column block of the 

second input matrix. The cost of this method is an up-front aggregate data movement that 

requires synchronization and may preclude the benefit to efficiency that occurs with 

overlapped communication and computation. The benefit is simplicity. Another method is to 

move row and column blocks of the input matrices between processors as the computation 

proceeds, accumulating results into the output matrix as they are computed. This method 

potentially allows more overlap of computation and communication, however, is more 

complicated to program. Often, the more simple solution is tried first, and the second is 

attempted if the first does not meet real-time requirements for the application. This means that 

often a full implementation is required to make design trade-offs. DoD programmers would 

benefit from mechanisms that allow modeling of the performance effects of different data 
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sharing methods so that they can be compared without requiring extensive programming 

efforts. 

 

Design Evaluation. For matrix multiplication, the size of each chunk can be easily determined 

by spreading the matrix over all processors in the system. However, if a matrix is spread over 

too many processors, there is a point of diminishing returns where the costs of communication 

and data sharing outweigh the benefits of parallelization. Further, there is an optimal chunk 

size relative to individual processing element cache size as well. The topology of the network 

in the system will also affect the number of parallel tasks and processors used for the 

algorithm, since different topologies will have different effects on communication 

performance. DoD applications would benefit from abstractions and models that are 

independent of the number of processors and network topology in order to provide maximal 

portability and simplicity. 

 

Geometric Decomposition. For matrix multiplication, the chunks into which the input and 

output matrices are divided are sub-regions of a two-dimensional data object. These sub-

regions are square, and therefore a simple geometric decomposition is a natural fit. The data is 

shared between parallel units by dimension, and then computation proceeds independently. In 

fact, the geometric decomposition used for matrix multiplication can be viewed as a simple 

case of a distributed array. DoD applications would benefit from abstractions that allow the 

generality of distributed arrays but provide simple mechanisms for geometric distributions as 

a special case (N.B. see distributed arrays). 

 

SPMD. For matrix multiplication with data decomposition, the single-program multiple-data 

pattern is an obvious and natural choice, since the same operations are carried out once the 

data has been distributed correctly. The program will perform the data distribution and 

sharing based on a local identifier that uniquely specifies the execution unit for each chunk in 

to which the data has been partitioned. Once the local processor identifier is defined, it is used 

to compute an index into the shared data structure in order to have each execution unit process 

the correct sub-region of data. This greatly simplifies programming, but does require that the 

programmer perform the bookkeeping operations of processor identification and index 

computation, which can be architecture-specific. DoD applications would benefit from 

abstractions that perform these index computations automatically and independently of the 

algorithm, in order to ease the burden on the programmer and to provide higher levels of 

portability. 

 

Distributed Arrays. Distributed arrays are key for any algorithm involving large multi-

dimensional data objects. In general, sub-regions of multi-dimensional data objects can be 

described by a block-cyclic specification, in which we supply three parameters for each 

dimension of the data: offset, block, and cycle. The offset tells which piece is associated with 

each chunk, the block tells the size of the chunk, and the cycle tells how often to repeat that 

chunk on that dimension. The ability to vary these parameters allows us to vary the 

granularity of the decomposition, thereby allowing a choice that maximizes efficiency of the 

implementation. The sharing of data between parallel units could also be described 

dimensionally, since each output chunk needs all rows of one input and all columns of the 

other. Once data is shared, the computation proceeds independently in parallel. If each 
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execution unit processes a block of the same size, then the load will be evenly balanced 

between all processors. DoD applications, which contain many such operations on multi-

dimensional data objects, would benefit greatly from abstractions that include block-cyclic 

partitions as an integral part of the semantics of the language and/or library. 

 

Implementation Patterns: UE (Unit of Execution) management, Synchronisation, 

Communication. The implementation patterns used in matrix multiply depend strongly on the 

nature of the patterns used in the previous phases of the algorithm design. For example, the 

blocks into which the output matrix is divided define exactly what the tasks are, and each 

process, or execution unit, in the parallel processor can process one task. It remains only to 

map processes to processors in the system, and there, the data distribution helps us as well. 

Because rows and columns of the inputs must be shared in a particular way, i.e., locally on a 

single dimension, the mapping of tasks to processors should place blocks that use the same 

section of input rows to physically adjacent or local processors in the system, in order to 

improve communication performance and reduce overhead. On a two-dimensional mesh 

processor, the one-to-one mapping based on topology is a natural mapping which can be 

achieved using the architecture-specific structures provided, however, since this is a natural 

and often-used pattern, the programmer would benefit from abstractions that map mesh 

processor topologies to multi-dimensional data objects in a portable way. These abstractions 

could use processor-specific application programming interfaces underneath for performance. 

Similarly, synchronization and communication in the matrix multiplication algorithm involve 

detailed scheduling and coordination of data movement with matrix computation. Commonly 

used operations are barrier synchronization, row and column broadcasts, and shift-like 

operations where a chunk of a matrix is sent a certain number of hops along a dimension of 

the mesh. Programming would be greatly facilitated by the use of portable interfaces and 

routines for commonly-used synchronization and communication patterns. 

 

3.5.3 Prototype abstractions 

 

In general, pattern-based abstractions for DoD applications should provide reusability 

(generality), portability, isolation from implementation details, and a level of abstraction that 

makes programming easier without sacrificing performance. One approach toward achieving 

these goals is to hide the complexity of parallelism, data distribution, and machine 

configuration inside a re-usable library of objects and functions that implement widely-used 

patterns. By parameterizing these objects and functions, they can be re-used for different 

instantiations of the same pattern. The key parameters describe the data (i.e., data size, shape, 

element type) as well as the parallel machine (e.g., mesh topology, size, and shape). In 

addition to machine and data parameters, object and function parameters could include 

directives that make precise the way in which a pattern is to be used as well as processor-

specific structures to support parallelism. Matrices and multi-dimensional objects would be 

implemented with internal state to facilitate sharing and distribution. The goal is for all 

processor-specific code to reside only inside the functions and objects and not in the 

application software, resulting in portable, high-level code that is more compact and easier to 

create. The challenge is in defining the abstraction barriers and parameterized structures that 

achieve this goal efficiently. 
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For example, matrix multiplication uses data parallelism, shared data, and SPMD patterns. By 

definition, each of these patterns has a context within matrix multiplication, forces that act on 

the pattern within that context, and solution that mitigates those forces. Figure 10 shows these 

patterns and summarizes the context, forces, and solution for each pattern. For matrix 

multiplication, the data is decomposed along two dimensions in a block pattern, where the 

extent of each block on each dimension depends on the size of the original matrix and the 

number of processors over which that dimension is mapped. The regularity of the 

computation is such that the same computation is carried out regardless of the block size. For 

example, processing a block of output requires a matrix multiplication of a row block of one 

input and a column block of the other input. The size of each block affects only the length of a 

dimension, or in implementation terms, the number of iterations in a loop over that dimension. 

Parameterization of a loop bounds is the easy, first step in creating pattern-like code that 

works for a particular decomposition, irrespective of block size. The challenge with matrix 

multiplication, and with many matrix algorithms, is the complexity of the data sharing, i.e., 

making sure that each processor has access to the necessary rows and columns of the inputs. 

This part of the code is often heavily tailored to a particular way of sharing data, and is 

difficult to parameterize, abstract, or re-use. Further, implementations are usually tailored to 

shared memory or message passing. 

 

Figure 10. Patterns for matrix multiplication 

 

If the data is in shared memory, we compute the right pointer based on the number of 

processors, matrix size, and processor identification number. If the blocks are shared via 

message passing, then we must make sure we receive the shared pieces either all at once in an 

up-front broad-cast, or in the course of the computation as needed (or some combination 

thereof). If the output data has not been allocated, then we must allocate buffer space either in 

shared memory or on the local heap for subsequent re-combination. Whether the 

implementation is shared memory or message passing, the reusable patterns in the code can be 

abstracted into a library of tools for the application programmer. In a pattern-based approach, 
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the implementation details would be hidden at the highest level, and the user is just concerned 

with specifying what data is moved rather than how it is moved. Additionally, at the highest 

level, the code should be independent of the execution units, i.e., the number of processors 

and their topology. Abstractions for parallelism should parameterize the level of parallelism. 

At the highest level, the code should be independent of the assignment of tasks to execution 

units.  

 

In the next several paragraphs, we start with a sample high level implementation and then 

walk through several code transformations that use patterns to achieve a final, parallelized, 

specific implementation. At each level, we define what information is used by each pattern 

and how that information would be captured in an object or function parameter. The final 

result is a template that will translate directly into a specific implementation on the target 

architecture. 

 

At the highest level, we start with the simplest code: the matrix objects are defined and a 

matrix multiply function (or method) is called for those objects. Information about the data is 

stored inside the object and used by the methods. The programmer would invoke the 

multiplication method as follows: 

 
MatrixIntObject A(100,300), B(300,500), C(100,500); 

MatrixIntMultiply(A, B, C); 

 

The sequential code executed by the multiply method would look as follows: 
if ((NumberCols(A) != NumRows(B)) || 

    (NumberRows(A) != NumberRows(C)) || 

    (NumberCols(B) != NumberCols(C)) 

 exit with error 

for(i=0; i<NumberRows(C); i++) 

   for(j=0; j<NumberCols(C); j++) 

      C[i][j] = 0; 

for(i=0; i<NumberRows(C); i++)  

    for(j=0; j<NumberCols(C); j++)  

      for(k=0; k<NumberCols(A); k++)  

          C[i][j] += A[i][k] * B[k][j]; 

 

The first pattern used in the parallel version of matrix multiplication is data parallelism. The 

data parallelism pattern denotes that the data is mapped over multiple processors and that the 

matrix multiply task uses that mapping to organize itself into tasks. Abstractions for data 

parallelism would need two classes of information related to data mapping: firstly, how to 

divide the matrix into chunks, and secondly, how to assign those chunks to processors in the 

machine. This information would be supplied in parameters we call here ―directives‖. In 

addition to the mapping information, a high-level specification of the parallel machine would 

be supplied. Ideally, the abstraction barriers between the mapping information and the parallel 

machine description would allow us to change the mapping independently of the machine, 

i.e., for a different size machine with the same matrix partitioning, we would change just the 

machine description and not the directives. Similarly, for a different mapping on the same 

machine, we would just supply the corresponding directives. Methods for matrix objects 

would be supplied that would map the data according to the directives and the machine and 

each matrix object would contain its own internal state denoting its current mapping to 

processor. The matrix multiplication code would use the information in the matrix object to 
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organize itself into tasks. A data parallel version of matrix multiplication might look 

something like this at the highest level: 

 
DecomposeIntMatrix A([100 300], Directives, Machine); 

DecomposeIntMatrix B([300 500], Directives, Machine); 

DecomposeIntMatrix C([100 500], Directives, Machine); 

MatrixIntMultiplyDataParallel(A, B, C, Directives, Machine); 

 

In this code fragment, the objects A, B, and C are instantiated with their sizes and with other 

parameters that specify their layout on a parallel machine. The data parallel matrix 

multiplication task uses the information contained inside the objects to execute the 

computation. Since the methods for decomposing data and performing the matrix 

multiplication are parameterized in machine and data size, the code is scalable and portable to 

other machine configurations. 

 

Inside of data parallelism, other patterns used in matrix multiplication are geometric 

decomposition, SPMD, and shared data. In our implementation, the geometric decomposition 

pattern specifies that the matrix is divided into blocks on each dimension and that these blocks 

are mapped to the corresponding dimensions of an abstract 2-D mesh architecture. The SPMD 

patterns generate the unique processor identifiers and program components to perform the 

matrix multiplication task with the given data decomposition. The shared data pattern 

specifies how the data is shared in each dimension within the main computation loop. A 

transformed code using pattern abstractions might look something like this: 

 
LocalID = UE_CREATE(Machine); /* Set the unique processor ID using an */ 

 /* abstract parallel machine description */ 

 

MyA = GEOMETRIC(A, LocalID, Directives, Machine); /* Specify geometric */ 

MyB = GEOMETRIC(B, LocalID, Directives, Machine); /* distributions for */ 

MyC = GEOMETRIC(C, LocalID, Directives, Machine); /* A, B, and C */ 

 

DATA_SHARE(MyA); /* Perform an initial sharing of data (skew) */ 

DATA_SHARE(MyB); /* skew definition is inside the object */ 

While (NOT-DONE(MyC)) { /* loop over all blocks */ 

  DATA_SHARE(MyA); /* get next block of input A */ 

  DATA_SHARE(MyB); /* get next block of input B */ 

 /* objects know how to access their next block 

*/ 

  MatrixIntMultiplyBlock(MyA, MyB, MyC); /* perform the block multiply */ 

  /* using the correct loop bounds */ 

 /* and block sizes */ 

} 

 

MatrixIntMultiplyBlock(MyA, MyB, MyC); /* Perform final block multiply */ 

DATA-SHARE(MyC); /* put current block of output C */ 

 

After this level of code, a specific implementation could use either message passing or shared 

memory patterns. In the message passing model, the matrix objects are physically distributed 

over the multiple processors. In this case, the directives specify where the different blocks 

reside in the processor array and the data sharing abstractions implement the message passing 

required to get the right data to the right place for the inner computations. In the shared 

memory model, the matrix objects reside in shared memory accessible to all processors. In 

this case, the directives and the local identifiers are used to compute the indices into the 

matrix in shared memory and the data sharing abstractions compute the next set of indices 
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inside the computation loop. The specific choice of implementation should be maintained 

inside the pattern abstractions to simplify programming and allow the programmer to focus on 

the algorithm rather than the implementation details. This would also enable design evaluation 

and performance optimization, since the programmer can use the same block of code to try 

both shared memory and message passing to find the higher-performing implementation. 

 

The final transformation would produce the specific C code to implement the parallel matrix 

multiply for either shared memory or message passing. In a shared memory implementation, 

the geometric pattern abstractions would define the block size from the properties of the 

matrix object, the mapping directives, and the machine description. The SPMD pattern 

abstractions would define the local variables to index processors in both dimensions and find 

the local piece for each matrix in shared memory by calculating a pointer form the processor 

identifier. The shared data abstractions would get the next shared piece in each iteration and 

the matrix multiply loops would be implemented using the pointers and indices computed in 

the earlier patterns. With the shared memory implementation, the blocks are located in 

different regions of memory, and the code staggers the accesses to improve performance. This 

is based on Cannon’s algorithm, which specifies a template that can be used for both shared 

memory and message passing. The final matrix multiplication code consists of simple 

memory transfers and multiply-accumulate loops. Example code for computing the indices 

and allocating local buffers is shown below; this code assumes that the number of processors 

is a known parameter and that each matrix object has information about its own size: 

 
BlockRows = NumberRows(C)/ProcY;  /* Output rows mapped to processor Y */ 

BlockCols = NumberCols(C)/ProcX;  /* Output columns mapped to processor Y*/ 

BlockInner = NumberCols(A)/ProcX; /* Inner dimension mapped to processor X */ 

 

rank_X = rank%ProcX;              /* Each processor’s unique identifier */ 

rank_Y = rank/ProcX; 

 

MyRow = rank_Y * BlockRows;       /* Each processor’s indices */ 

MyCol = rank_X * BlockCols; 

MyBlockX = rank_X * BlockInner; 

MyBlockY = rank_Y * BlockInner; 

 /* Local buffers for matrix blocks */ 

local_A = (int *)malloc(BlockRowsY * BlockInnerX * sizeof(int)); 

local_B = (int *)malloc(BlockInnerX * BlockColsX * sizeof(int)); 

local_C = (int *)malloc(BlockRowsY * BlockColsX * sizeof(int)); 

 

Inside the computation loop, the indices into the input matrices are computed as follows: 
for (shift_by=1; shift_by<ProcX; shift_by++) { 

 CurrInner = (rank_X + rank_Y + shift_by) % ProcX; 

 A_start = MyRowY * InnerDim + BlockInnerX * CurrInner; 

 B_start = CurrInner * BlockInnerX * OutCols + MyColX; 

 … 

 

Since the abstractions described in this section are all parameterized in machine size and array 

size, the fundamental and most important requirement for pattern-based matrix multiplication 

is that the code be generalized, i.e., execute correctly for any machine size and array size. In 

code that has been tailored for particular cases, this generalization can be difficult to achieve. 

The code above works correctly only for matrix sizes that are a multiple of the processor array 

size. However, since this code was developed in a top-down process using patterns, the 
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generalization to non-uniform data and machine sizes can be easily accomplished using the 

established code framework. 

 

In a message passing implementation, the geometric pattern abstractions would define the 

block size from the properties of the matrix object, the mapping directives, and the machine 

description in the same manner. In this case, the SPMD pattern abstractions would use that 

information to allocate message buffers and to define processor indices for communication 

patterns. The actual computations for indices and buffer sizes are exactly the same as the code 

fragment for the shared memory case. The share-data abstractions would send and receive the 

local blocks according to the communication patterns for matrix multiplication and the matrix 

multiply loops would be implemented directly on the message buffers. With the message 

passing implementation, an initial, up-front data movement is performed to stagger the use of 

the blocks in the data decomposition; subsequent data movements are between nearest 

neighbors in a shift pattern that implements Cannon’s algorithm. The final matrix 

multiplication code consists of successive nearest neighbor message passing and multiply-

accumulate operations to update the local output block. Because of the need to allocate 

buffers and fix message sizes, the message passing version of Cannon’s algorithm is difficult 

to generalize to non-square tile arrays and to matrix sizes that are not a multiple of the tile 

array. Assuming the correct data proportions, the code that could be generated has very 

similar patterns to that of shared memory, however, the patterns perform different tasks. 

 

3.6 Domain-specific Languages 

 

Domain-specific languages (DSLs) have been used widely in various domains. For example, 

SQL is a language for handling databases, and MATLAB is a langugate for matrix operations. 

They are designed specifically for the target domain, and domain experts use them very 

efficiently.  

 

Despite many advantages of DSLs, some areas lack suitable DSLs that can be used for 

deployed applications. For example, signal processing applications are being used heavily in 

DoD platforms. However, there are not widely used DSLs for the domain, and programmers 

are usually using general-purpose languages such as C. Therefore, a tremendous amount of 

programming effort is used to provide low level constructs to implement signal processing 

applications. Note that although MATLAB can be considered a signal processing language, it 

lacks some important language features that would make it an ideal DSL for signal processing 

applications. 

 

In this study, we propose an example strawman DSL for signal processing and show the 

benefits of having a DSL for the signal processing domain. The study results are shown in the 

result section. 
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3.6.1 Advantages and Disadvantages 

 

There are several advantages of using a domain-specific language [40]. 

 

 It can express a problem at the level of abstraction of the problem domain. 

Therefore, domain experts can express the problem using the right abstraction for 

the job. Without a DSL, programmers have to program at a level lower than the 

problem abstraction and this leads to significant overhead. 

 Self-documenting code. Since the code is at the right level of abstraction, the code 

is very similar to the documentation. Thus, code can serve as documentation 

without many modifications.  

 Improved productivity, quality, reliability, maintainability, portability, and 

reusability. 

 Higher performance. Since the coding is done in the problem domain, the compiler 

can understand the algorithm itself and the context better than a general-purpose 

language compiler. 

 

However, there are a few disadvantages of DSLs [40]. One of them is the cost of learning a 

new language. Note that the cost of learning a DSL by a domain expert is usually not very 

high since the language is closely coupled with the domain. Another disadvantage is the cost 

of designing, implementing, and maintaining the language and tools. This cost can be 

amortized across application deployments, so, for many domains, the benefit of using a DSL 

is higher than the cost of language development. 

3.6.2 Proposed DSL 

In this section, a proposed strawman DSL for the signal processing domain is described. The 

full language definition, compiler, and library are beyond the scope of this project. However, 

the description of the language shows advantages of using the DSL for DoD signal processing 

applications. 

3.6.2.1 Declaration 

 complex double x[1024], y[1K]; 

// Declare two complex arrays x and y. As shown for y, the user can use K, M, G, 

for common power of 2 abbreviations. 

 Complex single a; 

// Declare an array. However, no memory is allocated until it is actually needed 

3.6.2.2 Dynamic memory allocation 

 a = [1, …, 1K]; 

// Allocate 1024 elements to array a. The array is initialized with a sequence of 

data starting from 1 to 1024. 

 c = a * b; 

// Allocate an array c and the contents are initialized with the product of two arrays 

a and b 
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3.6.2.3 FFT operations 

 y = fft on m; 

// Perform FFT on input data m and the results are written in array y 

 y = radix-4 fft on m; 

// Perform radix-4 FFT 

 y = fft on m with fft-sizeof 1K 

// Perform 1 K FFT on m. If size of m is larger than 1 K, the input data is 

partitioned into segments of 1 K. One FFT is performed for each 1 K segment of 

m. If the size of the last segment is less than 1K, zero padding is done. 

 y = fft on m with fft-sizeof 1K, input-overlapping 16, output-overlapping 8 

// Similar to the previous example except that the segments of data have 

overlapping data. The number of elements overlapped in the input data is 16 and 

that in output data is 8. 

 IFFT is similar to the FFT. Use ifft instead of fft. 

3.6.2.4 Input data manipulation 

 fft on m with fft-sizeof 2K, input-sizeof 1K padded(1K, 0); 

// Partition input data into segments of 1K. Each segment is padded with 1K zero 

valuesa. Then, perform a 2K FFT on each segment 

3.6.2.5 Multiplication 

 * 

// Element-wise multiplication. If one array is shorter than the other, the shorter 

one repeats until the larger one is consumed. 

3.6.2.6 Concatenation 

 [a b] // horizontal concatenation 

 [a; b] // vertical concatenation 

 a .= b // same as a = [a b] 

3.6.2.7 Complex component manipulation 

 real a // real part of array a 

 imag a // imaginary part of array a 

 complex (a, b) // make complex using a as real and b as imaginary 

3.6.2.8 Transpose 

 Transpose a // transpose a matrix 

3.6.2.9 Change array dimension 

 Reshape (a, [3 6]) // change array dimension 

3.6.2.10 Maximum 

 max a // find maximum value in array a 
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3.6.2.11 Circular shift 

 Circshift (a, shift_amount) // circular shift of array a with the shift amount of 

shift_amount 

3.6.2.12 Compute signal power 

 Signal-power() // computes power of signal 

3.6.2.13 Iteration 

 for x=start:step:end // repeats from start to end with step value of step 

3.6.2.14 Data access 

 a(index) // index data in array a. Index starts from zero. 

 a(start:step:end) // data in array a is accessed from start to end with step value of 

step. For example, a(1,2,6) means a(1), a(3), and a(5) 

 a[[size]] // access data in blocks of size elements. If the last block is not a multiple 

of size, zero padding is automatically performed. For example, if array size of a is 

10, a[[4]] means a(0:3), a(4, 7), and [a(8:9) 0 0].  

 b[[size]][[size2]] // similar to a[[size]] but with two dimension 

 

3.6.2.15 Multi-core constraints 

 Compute using max 20 cores; // The code cannot use more than 20 cores  

3.6.2.16 Real-time constraints 

Compute in 10 ms latency, 5 ms throughput // Latency of 10 msec and throughput 

of 5 ms 

 

3.6.3 Related Languages 

There are a few related languages with the proposed DSL. These are discussed in this section. 

 

3.6.3.1 SPIRAL [34] 

SPIRAL was developed at Carnegie Mellon University and is under active development. It is 

a library generator for linear transforms. It supports libraries for scalar, vector, and parallel 

machines. It can support new architectures by regenerating a retuned library. SPIRAL has its 

own language, Signal Processing Language (SPL). SPL describes a problem in mathematical 

form. For example, FFT can be described as follows. 



DFTn  DFT2  I2 T2

4 I2 DFT2 L2

n

 
 

Another example description for matrix multiplication is 

ABC  

 

SPIRAL reports excellent performance. For example, they achieved up to about 1.8x speedup 

relative to FFTW for an FFT size of 215 [7]. 
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However, the SPL is not a purely mathematical language. A user needs to give a more 

detailed description tailored to transformation generation using a few primitives including 

recursiveness, permutation, and tensor products. The tensor products are not easy to handle 

and not intuitive for some new users. The FFT description is provided by the SPIRAL group, 

and the user can use it as is. However, even understanding the representation is not 

straightforward to most new users. 

 

Although SPIRAL demonstrated good performance on many signal processing problems, the 

SPL can have a steep learning curve for new users, and may be more appropriate for expert 

library developers. 

 

3.6.3.2 Scala [31] 

Scala is a functional object-oriented pattern matching language. One of the biggest advantages 

of Scala is that it can use Java libraries as is. Therefore, a large collection of the Java libraries 

is available to be used in Scala right away. 

 

It also provides features for DSL extensions. One feature allows any method to be used as an 

infix or postfix operator. For example, the following code utilizes this feature to extend the 

language. 

 

1 class MyBool(x: Boolean) {  

2 def and(that: MyBool): MyBool = if (x) that else this  

3 def or(that: MyBool): MyBool = if (x) this else that  

4 def negate: MyBool = new MyBool(!x)  

5 }  

6 def not(x: MyBool) = x negate;  

7 def xor(x: MyBool, y: MyBool) = (x or y) and not(x and y)  

 

The code extends three operators: ―and‖, ―or‖, and ―negate‖. In line 6, ―negate‖ is postfix and 

in line 7, the operators are infix. Compare the usage in conventional object-oriented style 

shown below: 

 

1 def xor(x: MyBool, y: MyBool) = x.or(y).and(x.and(y).negate)  

 

The conventional code is hard to read and understand. However, the Scala code is very clean 

and the extended operators look just like a conventional operator. 

 

Scala’s flexibility makes it an interesting starting point for DSLs; the efficiency of languages 

implemented with Scala will determine its success, and this is a potential topic for future 

research. 

 



33 

3.6.3.3 Erlang [4] 

Erlang is a pattern matching and functional language for fault tolerant parallel processing. 

However, the language does not provide any special language constructs for specific domains. 

Also, at this time, the performance from the language is not very high. 

 

3.6.3.4 Sisal [20] 

Sisal is a single-assignment functional parallel programming language. However, the 

language is not being actively developed and it does not provide signal processing domain-

specific constructs. 

 

3.6.3.5 LISP [3] 

LISP is derived from ―LISt Processing‖ and is widely used in the artificial intelligence field. 

It is an extendable language. However, it has a fixed S-expression syntax that is in 

parenthesized list form. An example is that to represent an addition, it uses (+ 1 2 3), where 

the first ―+‖ indicates an addition operation. The rest of the items are arguments to the 

addition. Even with extensions, the new form is still in S-expression format, which limits its 

flexibility. 
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4 Results and Discussions 
 

In this section, we discuss the results from the multi-core domain-specific architecture, 

emulation system, evaluation board, design pattern, and domain-specific language studies. 

4.1 Multi-core Domain-Specific Architectures 

In this section, we present the results of applying our models presented in Section 3.1 and 

analyze results. In our experiments, we assumed 65 nm technology running at 1 GHz with a 

total silicon area per chip of 130 mm
2
. The chip area was estimated from the footprint of the 

Texas Instrument TMS320C6474 [37], whose core chip area is similar to that of the 120-mm
2
 

DSP chip shown in [1]. 

 

Each component’s area was obtained using the InCyte [11] tool from Cadence. The InCyte 

tool used 130nm technology, and we extrapolated the area to 65 nm technology by dividing it 

by four.

 

Although our models can calculate the area and performance for any input configurations, the 

whole design space is too large to explore in a reasonable amount of time. Therefore, in our 

experiments, we fixed the value of each parameter to a power of two. From the ―reduced‖ 

parameter space, we use exhaustive search to choose the parameter settings that achieve the 

best performance under the area constraints. Then, to see the effect of a parameter on the 

performance, we varied one of the parameters while the others remained fixed and used the 

models to calculate the corresponding performance. If some parameters do not affect the 

resulting performance, they are not shown here. 

 

Figure 11 shows the output of the model for matrix multiplication. Each matrix size is 256K 

by 256K. The graphs show the number of cycles per element in a matrix. Performance 

depends on hardware support for: broadcast, streaming cache size, off-chip memory interface, 

vector size, and number of cores. Broadcasting, large cache size, and a large off-chip memory 

interface reduce the data transfer cost. A large cache size increases the block size used in the 

matrix multiplication, which results in a reduced number of data transfers per computation. 

Streaming hardware reduces the load/store cost while an increased number of cores and vector 

size reduces the computation cost. However, on-chip bandwidth does not change the 

performance since there is no inter-core communications in matrix multiplication. 
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Figure 11. Matrix multiplication results  

Figure 12 shows FFT performance. The data size of the FFT is 256K complex floating-point 

data elements. Each tile computes an independent FFT. The graphs show that the performance 

depends on number of cores, vector length, and data streaming.  Since FFT is a computation-

intensive kernel, the performance depends on the computation capacity, which is proportional 

to the number of cores multiplied by the vector length. The performance also depends on the 

streaming capability since the load and store operations can be a bottleneck.  
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Figure 12. FFT results 
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Figure 13. Object detection results 
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The object detection results are shown in Figure 13. The input image size is 512 by 512. One 

image is distributed to all cores and each core applies an independent filter, exploiting task 

parallelism.  

 

The results show that the performance depends on number of cores, vector length, and cache 

sharing. The performance as a function of the number of cores shows performance affected by 

different bottlenecks. When the number of cores is one or two, the performance is determined 

by the product of the number of cores and vector size.  

 

However, when the number of cores is between 4 and 256, performance is determined by off-

chip data transfer, since many cores need to bring in a large amount of data at the same time. 

Also, the data needs to be loaded into the cache many times since the data size is larger than 

the aggregate cache size.  

 

When the number of cores is 512 and 1024, if the data in cache is shared, the whole input data 

set can be held in the cache, and the input data needs to be loaded only once at the beginning. 

Then, the data transfer time is not a bottleneck anymore and performance is determined by the 

time to execute the load and store instructions. Since the input data is distributed to cores, the 

larger number of cores means that the smaller load and store time results in higher 

performance. The stream hardware improves performance. In the case of non-cache-sharing, 

the off-chip data transfer is still a bottleneck and the performance decreases as the number of 

cores increases. 

 

The graph as a function of vector length shows that the performance increases when the 

vector length increases from one to two, but stays the same when the vector size is four. The 

vector size of four does not help in this case since performance is now limited by the load and 

store execution time. It also shows that the cache sharing helps the performance significantly. 
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Figure 14. Neural network results 

 

The neural network results are shown in Figure 14. The input data size is 8192 by 8192. Each 

tile processes its own data in parallel. The results show that the performance is proportional to 

the number of cores and the vector length since it is a compute-intensive application.  
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4.2 Emulation System 

 

We studied the design of new emulation systems for structured ASICs [13], patterned ASICs 

[8], and the chip generator tool [22]. The structured ASIC contains a collection of prefixed 

building blocks in a fixed ratio. Stanford University is conducting research in this area. Figure 

15 shows an example of a structured ASIC. The chip contains an array of microprocessors 

(P), signal processors (S), and memory tiles (M). If a block is not needed, the building block 

can be powered down to reduce the power usage.  

 

 

Figure 15. Structured ASIC [13] 

 

When the chip is designed, a user designs building blocks in a HDL. A combination of the 

building blocks is populated in a chip. The high level output from the design is converted to 

RTL or gate level physical design by a human or automation tools. When the chip is used for 

applications, people can map applications to building blocks in the chip. Then, a tool can 

route connections between building blocks.  

 

There are big differences in manufacturing memory chips and logic chips that typically result 

in separate packages for memory chips and logic chips. A patterned ASIC [8] allows using 

memory technology for logic by using a regular pattern grid common to all designs including 

memory and logics for all layers. This ensures manufacturability and minimizes lithographic 

variations. However, it does not preserve an identical array of transistors across multiple 

designs, so these layers and metallization are customized for each design. Figure 16 shows an 

example chip designed using this technology. 

 

University of Notre Dame and Carnegie Mellon University conducted a study on patterned 

ASIC technology [8] and developed the Multi-core Power, Area, and Timing (McPAT) tool to 

evaluate trade-offs and explore the range of possible designs for complex, heterogeneous 

ASIC designs. It can include many processor cores, interconnection networks, I/O 

components, and multiple varieties of memory including 3D stacks of quilts. 
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Figure 16. Patterned ASIC [8] 

 

Chip generator [31] tool that uses a flexible, parameterized virtual device which can be 

tailored for each specific application. Chip design stages are as follows: 

 Configure system at high level using the chip generator tool 

 Run compiled application on the simulator or emulator containing the chip design 

generated by the chip generator 

 Reconfigure system based on the previous step to achieve better performance 

 Run recompiled application on the modified system 

 Iterate the previous two steps until a desirable system is designed 

 Finally, generate physical design and validation suite 

 

In the validation process, they use a ―relaxed‖ scoreboard. In this scheme, the output predictor 

knows a small set of possible answers and with a small additional flexibility; the end-to-end 

check becomes much easier than the traditional strict verification process. 

 

In this study, we designed an emulation system that can emulate any chip that was designed 

using the previously mentioned approaches. An overall design flow for the emulation system 

that integrates the ASIC design approach is shown in Figure 17.  
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Figure 17. Chip design flow using the proposed emulation system 

 

The chip design tool generates a design output that is converted to FPGA code, and the 

resulting FPGA code is mapped to FPGA chips. Then, the emulation system emulates the 

designed chip. In the process, a power model tool such as McPAT can be used. On the 

software side, the user program is analyzed, decomposed, and compiled. The output can be 

binary files or HDL files. The output is also fed to the emulation system. If the emulation 

results do not meet the criteria, the process is repeated until a good chip design is obtained. 

 

Figure 18 shows an enlarged block diagram of the chip design tool use part (left top box in 

Figure 17). Based on which technology is used in the process, the chip requirement or 

description is input to one of the chip design tools. The chip design output format is a layout 

level design for patterned ASIC and RTL for the chip generator. The format for structured 

ASIC is not known at the time of report. 
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Figure 18. Chip design tools 

 

Figure 19 shows an enlarged diagram of how user program tools are used (top right box in 

Figure 17). If the tool used is structured ASIC, the tool goes through several stages such as 

decomposition, compile, and mapping to generate binary file or HDL files. If Patterned ASIC 

or chip generator is used, the tool-specific compiler is used to generate binary files. 
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Figure 19. User program tools 

 

The emulation system consists of a host machine, multiple FPGA boards, and a software 

emulation system. The host machine is a front-end interface to the external world, including 

user and external tools. We believe Linux is a good candidate for the host machine OS.  

 

Each FPGA board populates multiple FPGA chips and memory chips. FPGA and memory 

chips are interconnected through an on-board network. Modules frequently used and/or easier 

to implement in an FPGA, such as a CPU pipeline, cache, interconnection network, or 

memory, can be emulated in FPGA chips.  

 

The software emulation system uses software to emulate a target module and connects to the 

FPGA boards. This is for modules infrequently used and/or hard to implement in FPGAs, 

such as slow I/O and power estimation modules. 

 

Each FPGA contains a part of the target system. The network between FPGAs provide 

communication. Each FPGA has a wrapper, which provides communication interface to 

others. 
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The target system consists of a set of modules and interconnection between modules. The 

modules may be described in RTL or logic gate level. In structured ASICs, there are four 

types of modules: processor, memory, signal processor, and configurable logic. In patterned 

ASICs and the chip generator, modules are more diverse. The final design may be multiple 

homogeneous or heterogeneous modules. 

 

The modules are mapped to FPGAs. If possible, multiple modules can be mapped to one 

FPGA. If a module cannot fit in an FPGA, it may be partitioned into multiple sub-modules 

that map to an FPGA. The partition information can be saved for reuse later. Multiple 

modules may be emulated using time-sharing. If needed, instrumental modules can be added. 

For example, power measurement can be added. 

 

Finding the best mapping that minimizes the number of FPGAs and communication network 

usage is a challenging task. It can start with a very basic algorithm such as a greedy algorithm, 

but with more research, better mapping algorithms can be used. 

 

To determine the necessary emulation size, the target system size needs to be determined. 

Then, based on that, the number of FPGA boards is determined. The emulation system needs 

to be expandable to accommodate various target system sizes. Each board needs to have an 

inter-board network interface and module identification number, and an FPGA identification 

number can be used for routing messages among modules. 

 

The emulation system design requirements determine the parts to be used. The higher the 

target emulation speed, the more difficult to design the system and the more expensive it is. 

At the time of this report, it seems reasonable to target an emulation speed of 6 - 30 MHz. 

This is 20 - 100 times slower than the maximum FPGA frequency, which is reasonably 

achievable for unoptimized designs. The Virtex-6 FPGA has up to 758,784 logic cells and 

1,200 user I/O pins that might be used in the emulation system. Memory size can be up to 8 

GB per module. The best communication network bandwidth and topology depend on the 

number of FGPAs and the number of boards. A mesh or ring topology might be used.  

 

The emulation system needs an interface to the host system. For example, PCIe or Ethernet 

can be used to communicate to the host system. 

 

The emulation system needs to interact with external tools. For this purpose, meta-data 

embedded in a chip design and compiled code may be used. Some examples are shown below. 

 

 Metadata from chip design 

o ## module_type memory size=4096 Mwords 

o ## module_type cache size=4096 words, set=2-way 

o ## module_type logic 

o ## module_type signal_processor 

 Metadata from user program compiler 

o ## code_type executable, module=module_id 

o ## code_type VHDL, module=module_idx 
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The communication between FPGAs can be done using messages. The communication 

protocol needs to be defined. For example, a header contains target FPGA identification 

number, target module identification number, source module identification number, type of 

communication, and message length. 

 

Instrumentation for the system can help in obtaining run-time statistics of the emulation 

system execution and target application execution. For example, a switch rate counter for 

power estimation per unit, amount of communication among modules, ratio of emulation 

cycles to target cycles for emulation system executions, can be collected. Examples of target 

application executions include the number of cycles, number of instructions, cache miss rate, 

amount of data to/from cache, amount of data to/from memory, and so on.  

 

The debugging feature allows users to locate bugs in an emulated system. A debugging 

module can be populated, and the module can accept user commands and interact with system 

modules. Each module, then, needs to be able to accept control through the debugging 

module. The debugging module can control the emulation system with controls such as 

starting, breaking, and stepping. It needs to be able to report status to the user, such as status 

of modules, status registers, and activities of modules. Optional features, such as a 

visualization tool, can help the user significantly. 

 

In the case of the chip generator, the target system is described using a ―program,‖ which is an 

intermediate level description of a chip. Structured ASICs and patterned ASICs may use the 

same form to describe the target system. If necessary, the intermediate form may be 

generalized to accommodate all target systems. Further study is needed to identify the fidelity 

between the intermediate form and the final target. The intermediate form must be usable by 

high-level domain experts. For example, all coherence and memory ordering rules require a 

specific set of hardware and protocol rules for correct implementation and often contains a 

number of tricky corner cases [22]. 

 

Validation is needed to ensure emulation system correctness. There are many different types 

of validation tests; a mix of them would ensure accuracy. Some of these tests are shown 

below:  
 

 Test of modules 

o Correctness in function and timing 

 Test of interactions of modules 

 Sample test vector based test 

 Exhaustive test vector tests 

 Fault detection tests 

o  Add in incorrect input and see if it is detected 

Validation tests need to be initiated with automatic and manual generation methods. In 

automatic generation, individual test suites are readily generated from the emulation system 

configurations. A test generator is needed from each module operation and inter-module 

interactions. Complex and/or special tests can be generated more efficiently by manual test 

suite generation. 
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In the structured ASIC case, it is relatively easy to design a small number of components for 

application domains in an FPGA, and powering off unused blocks is straightforward. The 

interconnection network in the structured ASIC is configurable and it can be implemented in 

an FPGA to allow ―soft‖ configuration of the network. 

 

A large-sized target system can be emulated using the proposed expandable emulation system. 

Mapping of peripheral functions implemented in libraries may be emulated using the software 

emulation unit. This issue is common to chip generators as well. 

 

In a patterned ASIC, the processing/memory ratio is higher than in an FPGA. Since an FPGA 

is generally slower than ASIC, a memory interface module is needed. To match the ratio in 

the target system, the memory interface module reads and supplies data when needed. Linking 

McPAT and an emulator is a separate task, but can be linked using meta-data. 

 

We surveyed power estimation tools for use in an emulation system. CACTI [21] from HP is 

a cache and memory access time, cycle time, area, leakage, and dynamic power model. It 

provides both a web interface (quid.hpl.hp.com:9081/cacti/) and C++ code. It does not 

provide short-circuit power modeling. Another similar tool is Wattch [9] from Princeton 

University. The tool provides a parameterized power model. 

 

 The Capet [36] from IBM estimates power due to switching activity. It can estimate power 

from RTL description. Another tool from Princeton University is Orion [39], which estimates 

power for on-chip interconnection network and is ongoing research work. It may augment 

other tools since it focuses on interconnection networks. 

  

We designed an emulation system for an example many-core target chip having up to one 

thousand cores. The target chip has a 400 mm
2
 chip area with a 32 nm technology operating at 

1 GHz clock speed. For this example, we estimated that up to 400 million logic gates are 

necessary based on the extrapolation from the Intel Core 2 Duo E8200 [24]. With an 

assumption that 50% of the gates are used for cache, we need to emulate 200 million gates by 

FPGA. Since the Virtex-6 FPGA has up to about 0.75 million logic cells, each of which has 3 

gates, about 100 FPGAs are needed. 

 

FPGAs can operate at up to 600 MHz, but the actual target chip speed will be much slower 

because of inter-module communication. We estimate about a 20 – 100 times slowdown 

which is still much faster than software simulation. 

 

The emulation system should provide remote access capability since different DoD user teams 

may be stationed in various locations, and we can amortize the cost over multiple sites.  

 

Several software tools are needed. One of them is a mapping tool that maps modules to 

FPGAs and is able to partition a module to multiple FPGAs if a module is too large to fit in an 

FPGA. Another is a wrapper tool that enables communication between modules. Another tool 

is instrumentation and debugging tool that allows interaction with the user and external tools. 

The last tool is a power estimation tool that estimates dynamic power using switching activity 

counter, static power, and short circuit power. 
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A validation suite is also needed to guarantee that the emulation system works properly. 

 

We surveyed other systems that may work for DoD emulation systems. One of them is the 

Palladium III [10] from Cadence. It is a software accelerator/emulation system of up to 256 

million gates operating at up to 2 MHz. It comes with a large set of software tools, such as a 

compiler, debugger, and power estimation tool. Further study is needed to determine 

suitability. 

 

Another system is the Novo-G [19] from University of Florida, which has 96 Altera Stratix 

FPGA chips. Each PCIe card has four FPGA chips. The boards are made by GiDEL [18] and 

are interconnected with InfiniBand. We estimate it would take about 50 boards to support the 

example target chip. 

 

Another FPGA board that may be used for emulation is Xilinx FPGA board from the DINI 

group [15]. Several boards with different configurations are offered. For example, the DN-

DUALV6-PCIe-4 board has two Virtex-6 chips, and the DN-80000K10 has 16 Virtex-5 

FPGAs. These systems are smaller than the proposed system, and they may be used to 

emulate only part of the chip. 

 

There are evaluation boards from FPGA vendors [2][41]. These usually come with a single 

chip on a board with a relatively low price. These may be used for a subset of a target chip, 

but are not suitable for full target chip emulation. 

 

Most of these systems provide hardware for emulation, but are lacking the software tools still 

need to be developed for productive emulation. 

4.3 Evaluation Board 

In this study, we developed a high-level design for an evaluation board for structured ASICs, 

patterned ASICs, and the chip generator. The evaluation board uses a host computer to control 

the board, the latter containing one or two target chips and memory. FPGAs on the board 

provide glue logic. 

 

The design can have variations to suit different purposes. For example, one variation can 

serve for memory-intensive applications by providing large-sized memory. Another variation 

can serve I/O-intensive applications by providing many I/Os with a reduced memory size. 

 

We designed the board to accept any one of the target chips. To allow this, the three target 

chips need to have a common pin layout for most common pins such as power, host interface, 

and JTAG. Some different pin layouts can still be accommodated by using FPGAs. For 

example, memory interface or I/O layouts can be different, but the FPGA can route them to 

the right place by configuring the FPGA with a corresponding bit file. 

 

Figure 20 shows a general block diagram of the proposed evaluation board. 
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Figure 20. General block diagram for evaluation board 

 

The board uses a PCIe board form factor. It can be populated with two FPGAs, two target 

chips, and four memory modules. We assume a target chip having a standard 1,536 pin BGA. 

However, if necessary, even a 2,025 pin BGA can be accomodated. The target chip may be 

soldered directly on the board or a socket may be used for easy testing. Soldering provides 

higher reliability, easier handling, and lower cost. Using a socket provides an easier 

replacement mechanism. 

 

There are a few candidates for host I/O including PCIe [33], which provides 8GB/s bandwidth 

with a x16 configuration. QuickPath [26] and HyperTransport [23] -- both 25.6 GB/s 

bandwidth -- are faster but relatively new. PCIe and HyperTransport cores for FPGAs are 

available and make the board design easier. The host I/O will provide a path for controlling 

target chips, uploading/downloading data, sending programs to and from target chips and 

memory, and debugging target chips, etc. External I/O and boot ROM logic will be connected 

to the target chip through glue logic in the FPGA. 

 

Four memory modules, to support up to 32 GB, can be populated. Each of the modules is a 

240-pin 8-GB DDR3. 

 

Memory glue logic in FPGAs provides flexibility for target chip memory configuration. For 

example, a larger data path with a smaller address space or a smaller data path with larger 

address space can be configured. It can operate at full memory speed through the FPGA logic. 

The IP core for DDR3 is available for easier implementation of memory interface.  
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Some status LCD or LED will be helpful to display the status of the board or debugging 

information. 

 

Alternative memory interfaces are those memory interfaces not provided by the FPGA.  The 

alternative memory interface can use one of two methods: fixed interface or semi-flexible 

interface. In a fixed interface, all memory interfaces are constant given that all target chips 

agree on the same memory configurations. If this method is used, it saves the FPGA, PCB 

space, and cost. It also increases reliability, and memory latency will be reduced.  

 

In the second method, the semi-flexible interface, four external interfaces are provided as a 

specification, each of which is connected to a memory module of 8GB. The target chip can 

choose its own configuration from one of the three possibilities: 

 

1.  Four internal interfaces on the chip, each with access to 8 GB of capacity, are 

connected to the four external interfaces directly. Note: the four external interfaces 

are connected to the four memory interfaces on the board. 

 

2.  The target chip can use two internal interfaces with 16 GB of memory each. Then, 

the chip internally uses two multiplexers to connect the two internal interfaces to 

four external interfaces to use the four external interfaces. To do that, the first half 

of the memory space in one internal interface goes to one external interface and 

the other half of the memory space in the internal interface goes to another 

external interface through the multiplexer. Then, each of the two internal interfaces 

has access to 16 GB of memory.  

 

3. One internal interface is connected to four external interfaces through a two-stage 

multiplexer on the chip. Therefore, the one internal interface effectively has access 

to 32 GB of memory. 

 

There are a few issues to be resolved with the target chips. One of them is power. The voltage 

inputs and number of pins needs to be determined by the target chip designers. Also, what and 

how many I/Os to populate needs to be determined. The interconnection network between the 

two chips needs to be decided. The pin layout and memory interface also need to be 

determined. 

 

Three example configurations are shown below. The first, shown in Figure 21, shows a 

configuration with one target chip. Note that the green lines represent connections on the 

board not used in the configuration. Figure 22 shows a configuration with two target chips 

with a large memory to support memory-intensive applications. Figure 23 shows a 

configuration with two chips to support I/O-intensive applications. 
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Figure 21. Example board configuration I 

 

 

Figure 22. Example configuration II 
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Figure 23. Example configuration III 

4.4 Design Patterns 

The prototype abstractions presented earlier demonstrate how a pattern-oriented approach for 

programming could be used to create portable and scalable code using parameterized 

abstractions to encapsulate the details of parallel programming. In order for this approach to 

be applicable to DoD applications, we must ensure that the code generated by these 

hypothesized abstractions attains high performance on a target architecture. To demonstrate 

high performance, we created a fully generalized shared-memory implementation of matrix 

multiplication that works for arbitrary matrix and processor sizes and that uses the indices 

computed from the parameterized patterns.  

 

The final, generalized code was implemented on the Tilera TILE64 [5]. The TILE64 consists 

of 64 processors on a chip organized into a 2-D mesh fabric. Both shared memory and 

message-passing mechanisms are provided. Floating-point operations are implemented in 

software; for this reason, the performance of integer-based matrix multiplication was chosen 

for study. 

 

A code fragment from the matrix multiplication algorithm is shown in Figure 24. The first 

part of the code computes the parallel indices based on processor ID. In the pattern-based 

abstractions hypothesized in the previous section, these computations would be done when the 

matrix object is instantiated and mapped to an abstract processor. The indices would be 

recomputed and stored inside the object if the object were re-mapped to the same or a 

different processor array. Therefore, the index computations are not considered as part of the 



56 

matrix multiplication algorithm, and are not included in the performance measurements. The 

function ―StridedMemCopy‖ copies blocks of shared memory to a local buffer to access the 

correct block of the matrix. The function ―mutiply‖ implements the loops to multiply the two 

local blocks. 

 

Figure 24. Matrix multiplication generalized code 

BlockRowsY = (int)ceilf((float)OutRows/(float)ProcY); 

BlockColsX = (int)ceilf((float)OutCols/(float)ProcX); 

BlockInnerX = (int)ceilf((float)InnerDim/(float)ProcX); 

 

MyRowY = rank_Y * BlockRowsY; 

MyColX = rank_X * BlockColsX; 

MyBlockX = rank_X * BlockInnerX; 

BlockRowsY = MIN(BlockRowsY, OutRows-MyRowY); 

BlockColsX = MIN(BlockColsX, OutCols-MyColX); 

 

Leftover = InnerDim - BlockInnerX * (ProcX-1); 

if (BlockInnerX > Leftover) Limit = ProcX-1; 

else Limit = ProcX; 

 

for (shift_by=0; shift_by<Limit; shift_by++) { 

  CurrInner = (rank_X + rank_Y + shift_by)%Limit; 

 

  StridedMemCopy(local_A,  

 BlockInnerX*sizeof(int), 

 &mat_A[MyRowY*InnerDim+BlockInnerX*CurrInner], 

 InnerDim*sizeof(int),  

 BlockInnerX*sizeof(int), 

 BlockRowsY); 

 

  StridedMemCopy(local_B, 

 BlockColsX*sizeof(int), 

 &mat_B[CurrInner*BlockInnerX*OutCols+MyColX], 

 OutCols*sizeof(int), 

 BlockColsX*sizeof(int), 

 BlockInnerX); 

 

  multiply(local_A, local_B, local_C, 

 BlockRowsY, BlockColsX, BlockInnerX); 

} 

 

if (BlockInnerX > Leftover) { 

  StridedMemCopy(local_A,  

 Leftover*sizeof(int), 

 &mat_A[MyRowY*InnerDim+BlockInnerX*(ProcX-1)], 

 InnerDim*sizeof(int),  

 Leftover*sizeof(int), 

 BlockRowsY); 

 

  StridedMemCopy(local_B, 

 BlockColsX*sizeof(int), 

 &mat_B[(ProcX-1)*BlockInnerX*OutCols+MyColX], 

 OutCols*sizeof(int), 

 BlockColsX*sizeof(int), 

 Leftover); 

 

  multiply(local_A, local_B, local_C, 

 BlockRowsY, BlockColsX, Leftover); 

} 

 

StridedMemCopy(&mat_C[MyRowY*OutCols+MyColX], 

 OutCols*sizeof(int),  

 local_C,  

 BlockColsX*sizeof(int),  

 BlockColsX*sizeof(int),  

 BlockRowsY); 
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The results for this code are shown in Figure 25 for increasing machine sizes. Both cycle 

count and throughput (operations per cycle) are shown. The performance decreases as we 

scale to larger machine sizes; this can be attributed to increased memory network contention.  

 

Figure 25. Performance results, generalized dode (problem size: 720x720x720) 

 

For comparison, we generated results for a baseline version of matrix multiplication based on 

Cannon’s algorithm. This baseline version is not generalized: the matrix and block sizes are 

fixed in the code at compile time, and the code only that works for square matrices and square 

tile arrays where the matrix size is a multiple of the tile array size. The comparison between 

the two codes is shown in Figure 26, which shows cycle counts for each processor for each 

run of the code.  
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Figure 26. Performance comparison (cycle count) 

 

Multiple runs were performed with different machine sizes; the large changes in cycle count 

show the boundaries between machine configurations. There is a fundamental difference in 

the access patterns between the two versions: the baseline code has inputs in skewed order, so 

that the matrix multiplication accesses memory in regular patterns. In the fully generalized 

code, the inputs are in normal, C order, and the skew indices must be computed inside the 

main loop. This difference in access patterns has an interesting effect: the generalized code 

performs better for some of the smaller machine sizes, but slightly worse for the larger 

machine sizes. Further experimentation, profiling, and analysis must be performed to 

determine the cause of the performance discrepancy. 

 

Figure 27. Message passing (iLib) performance results 

 

A second version of matrix multiplication was implemented using iLib message passing. Note 

that iLib is a message passing and shared memory communication library for TILE64 from 

Tilera Corporation. Performance results for this code are shown in Figure 27. In this code, the 
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block sizes and row/column indices are computed in the same manner as the shared memory 

implementation, but the  values are used to set up message buffers and perform transfers. The 

message passing code performs better for larger tile arrays, but worse for small tile arrays. 

One possible reason for this is that the overhead for message transfer is relatively higher for 

smaller tile arrays, but the greater efficiency of message passing starts to dominate in larger 

tile arrays where memory bandwidth would start to saturate. Further profiling and 

experimentation is needed to examine the performance behavior of this code. 

 

To demonstrate the synergy of patterns between the message passing and shared memory 

implementations, a second, non-generalized version of the shared memory version was 

created. This second version has the same performance characteristics of the generalized 

version presented above but has the same structure as the message passing code at the high 

level, suggesting that abstractions could be built which take advantage of these common 

patterns. To demonstrate the synergy of this version with message passing, this code was not 

generalized to arbitrary matrix sizes and tile arrays. 

 

The message passing version and the second shared memory version each start with the same 

index computations and local buffer allocations, shown below with the corresponding pattern 

abstractions: 

 
int rank_X = rank % ProcX; /* LocalID = UE_Create(Machine); */ 

int rank_Y = rank / ProcX; 

 

int BlockRowsY = OutRows / ProcY; /* MyPiece = GEOMETRIC(Matrix, */ 

int BlockColsX = OutCols / ProcX; /*   LocalID, Directives, Mapping) */ 

int BlockInnerX = InnerDim / ProcX; 

 

int MyRowY = rank_Y * BlockRowsY; 

int MyColX = rank_X * BlockColsX; 

int MyBlockX = rank_X * BlockInnerX; 

int MyBlockY = rank_Y * BlockInnerX; 

 

int A_Buf = BlockRowsY * BlockInnerX; 

int B_Buf = BlockInnerX * BlockColsX; 

int C_Buf = BlockRowsY * BlockColsX; 

local_A = (int *)malloc(2 * A_Buf * sizeof(int)); 

local_B = (int *)malloc(2 * B_Buf * sizeof(int)); 

local_C = (int *)malloc(C_Buf*sizeof(int)); 

for (i=0; i<C_Buf; i++) local_C[i] = 0; 

 

After the initial index calculations, the message passing and shared memory versions share a 

similar structure. Figure 28 shows the message passing code. Inside the functions, calls to iLib 

implement the message transfers. Figure 29 shows the shared memory code. In each case, 

high-level patterns are shown in comments. 
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Figure 28. Message passing (iLib) code excerpt 

 

Now, we discuss the abstractions described above in more detail. Specifically, we describe the 

information that must be contained in each abstraction in order to generate the generalized C 

code in the results section. This discussion is intended to provide a general framework for 

future research in this area by setting forth requirements in the context of a pattern-oriented 

approach to software design. Design and development of a working set of pattern-based 

software abstractions would be the subject of future research projects. 

 

The fragment of high-level code that uses hypothesized pattern-based abstractions is shown 

again below: 

 
DecomposeIntMatrix A([100 300], Directives, Machine); // Instantiate 3 matrix 

DecomposeIntMatrix B([300 500], Directives, Machine); // objects, specify 

data 

DecomposeIntMatrix C([100 500], Directives, Machine); // decomposition 

MatrixIntMultiplyDataParallel(A, B, C, Directives, Machine); 

 

/* DATA_SHARE(MyA) and DATA_SHARE(MyB) */ 

InitSkew(&send_left, &recv_right, &send_up, &recv_down, rank_X, rank_Y, ProcX, ProcY); 

ShiftMsgs(send_left, recv_right, local_A, A_Buf, 1, 0, rank_X, rank_Y); 

ShiftMsgs(send_up, recv_down, local_B, B_Buf, 1, 0, rank_X, rank_Y); 

 

Neighbors(&send_left, &recv_right, &send_up, &recv_down, rank_X, rank_Y, ProcX, ProcY); 

int compute_flag = 0, recv_flag = 1; 

for (i=0; i < ProcX-1; i++) { /* while (NOT-DONE(MyC) */ 

  compute_flag ^= 1; 

   

  /* DATA_SHARE(MyA) and DATA_SHARE(MyB) */ 

  ShiftMsgs(send_left, recv_right, local_A, A_Buf, compute_flag, i, rank_X, rank_Y); 

  ShiftMsgs(send_left, recv_right, local_B, B_Buf, compute_flag, i, rank_X, rank_Y); 

 

  /* MatrixIntMultiplyBlock */ 

  multiply(local_A+compute_flag*A_Buf, local_B+compute_flag*B_Buf, 

           local_C, BlockRowsY, BlockColsX, BlockInnerX); 

 

  ClearMessages(); 

} 

compute_flag ^= 1; 

 

/* MatrixIntMultiplyBlock and DATA_SHARE(MyC) */ 

multiply(local_A+compute_flag*A_Buf, local_B+compute_flag*B_Buf, 

         local_C, BlockRowsY, BlockColsX, BlockInnerX); 
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Figure 29. Code excerpt for shared memory, version 2 

 

In this code fragment, there are two types of objects: data objects such as matrices, and task 

objects such as the matrix multiplication task. 

 

Task objects have two fundamental properties that are relevant to their coded implementation. 

Firstly, the decomposition for the task must be specified. If the task uses task decomposition, 

then the problem must be further divided into sub-tasks. If the task uses data decomposition, 

then all inputs and outputs to the task must have a decomposition specified. If data 

decomposition is specified, but inputs and outputs have no decomposition, then the 

specification is inconsistent, and an error would be generated. 

 

Secondly, the program structure must be specified. If the program structure is SPMD, as in 

the case of matrix multiplication, then the program components must be provided in a SPMD 

coding framework, including initialization, UID generation, program execution, data 

distribution, and finalization. The methods for task objects could change either the 

decomposition or the program structure, as long as the correct metadata were supplied. Since 

the matrix multiplication case study in this work uses only data decomposition and SPMD, 

the development of task object parameters and how they would be used to generate code is 

left for future efforts. 

 

/* DATA_SHARE(MyA) and DATA_SHARE(MyB) */ 

CurrInner = (rank_X + rank_Y) % ProcX; 

A_start = MyRowY * InnerDim + BlockInnerX * CurrInner; 

B_start = CurrInner * BlockInnerX * OutCols + MyColX; 

StridedMemCopy(&local_A[A_Buf], BlockInnerX*sizeof(int), &mat_A[A_start], 

               InnerDim*sizeof(int), BlockInnerX*sizeof(int), BlockRowsY); 

StridedMemCopy(&local_B[B_Buf], BlockColsX*sizeof(int), &mat_B[B_start], 

               OutCols*sizeof(int), BlockColsX*sizeof(int), BlockInnerX); 

 

compute_flag = 0, recv_flag = 1; 

for (shift_by=1; shift_by<ProcX; shift_by++) { /* while (NOT-DONE(MyC) */ 

  compute_flag ^= 1; recv_flag ^= 1; 

 

  /* DATA_SHARE(MyA) and DATA_SHARE(MyB) */ 

  CurrInner = (rank_X + rank_Y + shift_by) % ProcX; 

  A_start = MyRowY * InnerDim + BlockInnerX * CurrInner; 

  B_start = CurrInner * BlockInnerX * OutCols + MyColX; 

  StridedMemCopy(&local_A[recv_flag*A_Buf], BlockInnerX*sizeof(int), &mat_A[A_start], 

                 InnerDim*sizeof(int), BlockInnerX*sizeof(int), BlockRowsY); 

  StridedMemCopy(&local_B[recv_flag*B_Buf], BlockColsX*sizeof(int), &mat_B[B_start], 

                 OutCols*sizeof(int), BlockColsX*sizeof(int), BlockInnerX); 

 

  /* MatrixIntMultiplyBlock */ 

  multiply(local_A+compute_flag*A_Buf, local_B+compute_flag*B_Buf, local_C, 

           BlockRowsY, BlockColsX, BlockInnerX); 

} 

compute_flag ^= 1; recv_flag ^= 1; 

 

/* MatrixIntMultiplyBlock and DATA_SHARE(MyC) */ 

multiply(local_A+compute_flag*A_Buf, local_B+compute_flag*B_Buf, 

         local_C, BlockRowsY, BlockColsX, BlockInnerX); 

C_start = MyRowY * OutCols + MyColX; 

StridedMemCopy(&mat_C[C_start], OutCols*sizeof(int), local_C, BlockColsX*sizeof(int),  

               BlockColsX*sizeof(int), BlockRowsY); 
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In addition to size, dimensionality, and element type, matrix objects would require extra 

parameters and metadata that specify data decomposition in such a manner that a data parallel 

function could derive the correct code from the information inside the matrix object. The code 

inside the data parallel matrix multiplication is shown again below. 

 
LocalID = UE_CREATE(Machine); /* Set the unique processor ID using an */ 

 /* abstract parallel machine description */ 

 

MyA = GEOMETRIC(A, LocalID, Directives, Machine); /* Specify geometric */ 

MyB = GEOMETRIC(B, LocalID, Directives, Machine); /* distributions for */ 

MyC = GEOMETRIC(C, LocalID, Directives, Machine); /* A, B, and C */ 

 

DATA_SHARE(MyA); /* Perform an initial sharing of data (skew) */ 

DATA_SHARE(MyB); /* skew definition is inside the object */ 

While (NOT-DONE(MyC)) { /* loop over all blocks */ 

  DATA_SHARE(MyA); /* get next block of input A */ 

  DATA_SHARE(MyB); /* get next block of input B */ 

 /* objects know how to access their next block 

*/ 

  MatrixIntMultiplyBlock(MyA, MyB, MyC); /* perform the block multiply */ 

  /* using the correct loop bounds */ 

 /* and block sizes */ 

} 

 

MatrixIntMultiplyBlock(MyA, MyB, MyC); /* Perform final block multiply */ 

DATA-SHARE(MyC); /* put current block of output C */ 

 

In the first step, a unique local identifier is created for each processor in the parallel machine. 

The function UE_CREATE returns this local identifier given an abstract description of the 

machine. In the case of matrix multiplication, the machine is described as a two-dimensional 

tile array. The actual assignment of physical processors to abstract processors can be achieved 

either inside the UE_CREATE function or in the system software for the processor. In either 

case, only the unique processor identifier is needed for the matrix multiplication code. 

 

In the next step, the data parallel matrix multiplication uses the processor ID, the mapping 

directives, and the abstract machine description to determine which piece of each matrix is 

mapped to each processor. The function GEOMETRIC performs the geometric decomposition 

of each matrix using these parameters. For the shared memory code, this function computes 

the block sizes and pointers into shared memory for each matrix. The mapping directives 

specify the block-cyclic parameters on each dimension of the matrix and the mapping of 

dimensions between the matrix and the abstract 2-D processor array. The abstract machine 

description defines the extent of the tile array in each dimension. The computations performed 

inside the GEOMETRIC pattern are exactly those in the C matrix multiplication code 

presented earlier. 

 

For distributed matrices with message passing, the semantics of the GEOMETRIC function 

are a bit different. In this case, the data distribution is a property of both the matrix and the 

task. For the matrix, the data distribution specifies how the data is arranged over the 

processors. For the task, the data distribution specifies a required arrangement of data over 

processors for inputs and outputs. In some cases, the data distributions required for the task 

may not be the same as the data distributions of the input matrices. In this situation, the data 

must be rearranged into the correct distribution for the algorithm. With the correct 
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information contained inside the data objects, any required data movements can be performed 

inside the GEOMETRIC pattern and will be invisible to the programmer at the pattern level. 

Once the data is arranged correctly for the algorithm, message buffers are allocated and 

source-destination pairs are determined for the various message exchanges in the algorithm.  

 

After the GEOMETRIC pattern, each processor has an object that contains the location of its 

block for each iteration of the algorithm. Inside the matrix multiplication loop, the 

DATA_SHARE function uses the information inside this object to retrieve the next block. If 

the data is in shared memory, the DATA_SHARE function computes a pointer and retrieves 

the appropriate block. If the data is in distributed memory, then the DATA_SHARE function 

accesses a message buffer into which a message is received from another processor; the 

source processor is determined from the mapping information contained in the local object. 

The local output object contains the information required to determine when the loop is 

finished; the NOT_DONE function accesses this information. 

 

The abstractions described here would provide a pattern-based approach that isolates details 

of pattern implementation from the programmer at the high level. The challenge for future 

work in this area is to define the information contained in the object properties, mapping 

directives, and abstract machine descriptions such that the abstraction barriers between the 

different functions can be maintained and high performance code can still be produced. An 

immediate next step in this research would be to implement the message-passing version of 

matrix multiplication from the pattern template described above to verify both the abstraction 

semantics and performance viability.  

 

The idea of encapsulating mapping information inside data and task objects and providing 

semantics and notation for describing data mappings has been explored in depth in previous 

efforts. The Embedded Digital Systems Group at Lincoln Laboratory has been developing 

parallel libraries for more than 10 years [6]. The libraries developed there include STAPL 

(Space-Time Adaptive Processing Library) [14], PVL (Parallel Vector Library) [28], and 

pMatlab [27]. All of these libraries have increased the level of abstraction by implementing a 

map layer that insulates the algorithm developer from writing complicated message-passing 

code. These libraries introduce the concept of map independence—that is, the task of mapping 

the program onto a processing architecture is independent from the task of algorithm 

development. Once the algorithm has been specified, the user can simply define maps for the 

program without having to change the high-level algorithm. The maps can be changed 

without having to change any of the program details. The key idea behind map independence 

is that a parallel programming expert can define the maps, while a domain expert can specify 

the algorithm. 

 

Lincoln Laboratory has also developed an automatic parallelization framework, called 

pMapper, which is general with regard to programming languages and computer architectures 

and which focuses on distributing operations common in signal processing [6]. The pMapper 

framework globally optimizes performance of parallel programs at runtime. The underlying 

pMapper technology varies the amount of parallelism according to performance goals and is 

therefore particularly relevant both to the design evaluation pattern and also to the need for 

DoD applications to meet performance constraints. 
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DoD performance constraints act as forces on all patterns in the sense that they affect the way 

the patterns are used. For example, form-factor constraints in a DoD platform may constrain 

the number of processors used whereas the need for real-time performance may increase the 

number of processors. This balancing of forces is an often-repeated pattern in DoD 

applications, and should be incorporated into all defined parallel patterns, particularly design 

evaluation. Since they provide key technologies for achieving this goal, the Lincoln 

Laboratory efforts are directly relevant to pattern-oriented software development and future 

research efforts in this area would benefit strongly from a detailed examination of these 

technologies. 

 

This work examined how parallel design patterns can be used on multi-core architectures to 

solve some of the software challenges posed by DoD applications. This study was performed 

in the context of a specific kernel and a representative architecture. The design patterns used 

in implementing the kernel on the architecture were analyzed with the goal of designing a set 

of portable, machine-independent abstractions to assist in parallel program development. 

Performance results for a pattern-oriented implementation of the kernel on the architecture 

were measured to show the viability of the approach. A key result of the work is the definition 

of requirements for pattern-based abstractions for future DoD software development efforts 

for multi- and many-core architectures. 

4.5 Domain-Specific Languages (DSL) 

In this section, an example application is briefly described that is implemented using the 

proposed DSL.  

4.5.1 Complex Ambiguity Function (CAF) 

CAF is a radar signal processing application that detects the time and frequency delay 

between two streams of data [16]. It consists of five stages: 1) a Hilbert transformation, 2) 

channelization into frequency bands, 3) threshold computation, 4) CAF space construction to 

produce time and frequency delay bins, and 5) peak detection. 

4.5.2 CAF Implemented Using the Proposed DSL 

We implemented an application, Complex Ambiguity Function (CAF), using the proposed 

DSL. Implementing CAF in the DSL reduced code size by more than a factor of 50 compared 

to a C implementation.  

4.5.3 Coding Comparison 

In this section, for illustrative purposes, we implemented an arbitrary code snippet using the 

proposed DSL and compared it with a C-language implementation. This demonstrates the 

easiness and conciseness of the proposed DSL. As a summary, the proposed DSL can 

describe the code snippet in two lines of source code, where MATLAB takes ten lines, and C 

takes 21 lines. 
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4.5.3.1 Proposed DSL 

1 y1 = fft_r2c on imag(a) with fft-sizeof 512, input-overlapping 4; 

2 z1 = fft_r2c on imag(b) with fft-sizeof 512, input-overlapping 4; 

4.5.3.2 MATLAB 

1 offset2 = 1; 

2 for offset1 = 1:508:3000000 

3  A = imag (input1(offset1: offset1 + 512)); 

4  C = imag (input2(offset1: offset1 + 512)); 

5  if (offset + 512) > 3000000 

6   A(512) = 0; 

7   C(512) = 0; 

8  B(offset2:offset2+512) = fft(A); 

9 D(offset2:offset2+512) = fft(C); 

10 offset2 = offset2 + 512; 

4.5.3.3 C language 

1 for (i=0;i<nblks;i++) { 

2        npts = blksize/2; 

3         blkstrt = i*blksize - 2*spad; 

4        blkstp = blkstrt + 2*nfft; 

5         nstrt = 0; 

6         nend = nfft;  

7         if(blkstrt < 0) { 

8            nstrt = spad; 

9            memset(podd,0,nstrt*sizeof(double)); 

10            memset(peven,0,nstrt*sizeof(double)); 

11         } 

12        else{ 

13            memset(podd,0,nfft*sizeof(double)); 

14            memset(peven,0,nfft*sizeof(double)); 

15         }          

16         if(blkstp > 2*ndat) { 

17           blkstp = 2*ndat; 

18           nend = (blkstp-blkstrt)/2; 

19           npts = (blkstp-blkstrt)/2 - spad; 

20         } 

21         for (j=nstrt;j<nend;j++) { 

22           peven[j] = chirp[blkstrt+2*j]; 

23           podd[j]  = chirp[blkstrt+2*j+1]; 

24         } 

25         fftw_execute_dft_r2c(pf,podd,fodd); 

26 } 
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5 Conclusions 
 

In this study, USC/ISI conducted exploratory studies to establish the need for and the value of 

innovative research on domain-specific architectures, applications, and tools based on the 

challenges posed by computational bottlenecks in DoD applications.  

 

In the multi-core domain-specific architecture study, we developed chip area and performance 

models and used them to estimate performance for several kernels and an application. The 

results show that the performance highly depends on the design of a chip and to obtain high 

performance on domain-specific application, it is necessary to design the chip based on the 

characteristics of the target domain. Our results show that very high performance can be 

obtained using domain-specific architectures. Therefore, it is necessary to develop a particular 

type of processor for each target domain to obtain the high performance. 

 

USC/ISI proposed a prototype emulation system that can be used for DoD applications 

readily. The system can be used for any type of a new processor for DoD applications and 

will provide orders of magnitude faster emulation time compared to a software simulation 

approach. 

 

USC/ISI proposed prototype evaluation boards for three new processor architectures proposed 

for DoD applications. The three processor types are structured ASICs, patterns ASICs, and 

generated chips. A common evaluation system can be used for any type of these processors. 

Also, the system provides flexibility so that it can be used for wide variety of application 

environments. 

 

A board generator is a tool to automate the design of an evaluation board for special-purpose 

architectures. The board generator will be based on a template design, which will make the 

automated design feasible and the results reliable. USC/ISI proposed a two-phase research 

program: in the first phase, a limited scope board generator is developed. The board generator 

will be robust enough for producing designs for structured ASICs, patterned ASICs, and 

generated chips. In the second phase, the board generator’s scope is expanded to include more 

target processors or systems.  

 

USC/ISI has evaluated design patterns for parallelism in DoD applications. A design pattern 

is a description of a tested and verified method of programming for specific problems.  

USC/ISI evaluated the potential benefits of research on design patterns for DoD applications 

by applying design patterns to exemplary kernels. The results show that design patterns can be 

very helpful for DoD applications. Therefore, it would be beneficial to the DoD to develop 

design patterns that address DoD specific needs. 

 

USC/ISI evaluated domain-specific languages for DoD applications.  Domain-specific 

languages are useful in boosting. We identified an area that can benefit significantly by using 

a domain-specific language. USC/ISI also proposed a strawman domain-specific language and 

showed its usability and effectiveness. We showed that the proposed domain-specific 

language can reduce the number of source lines of code by a factor of ten or more compared 

to the C language.  
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6 Recommendations 
 

Domain-specific multi-core architectures are a critical component in mission-critical systems 

since they can provide high performances that cannot be achieved by general purpose 

architectures. However, design of these architectures is challenging. Therefore, USC/ISI 

recommends research efforts on architecture design including performance estimation tools, 

processor design tools including simulators/emulators and application development tools such 

as compilers, debuggers, and performance profiling/monitoring tools. We also recommend 

investment in run-time environments and hardware chip and system development. Although 

the target chip is domain-specific, much of the investment could be shared across multiple 

domains. For example, an emulation system could be shared by multiple domains. 

 

Emulation systems are a very helpful tool in designing new chips/systems since it provides 

orders of magnitude faster emulation time compared with a software simulation system. The 

faster emulation time provides quick feedback to system designers who can reduce design 

time. USC/ISI recommends development of emulation systems that can be used for multiple 

DoD systems. The boards would be expandable to accommodate any reasonably sized 

processor-based systems. The emulation system would be accompanied by a supporting 

software tool chain environment with support function libraries. 

 

If the structured ASICs, patterned ASICs, and chip generators are funded, evaluation boards 

for them should be developed as well. Therefore, USC/ISI recommends building a set of 

evaluation boards to support the chips. The evaluation boards would share common designs 

such that any chip can be populated on the developed board. Also, the board would provide 

flexibility, such that different configurations of the boards for different application domains 

can be configured. By developing the common evaluation boards, duplicated effort could be 

avoided. 

 

We recommend that a board generator be developed to automatically generate evaluation and 

development boards. This work could be carried out in two phases, one with a more limited 

set of target chip interfaces. 

 

Design patterns are a useful means to boost the productivity of programmers. Therefore, 

USC/ISI recommends research on providing design patterns for DoD relevant topics. In 

addition, USC/ISI recommends development of a design pattern repository system. The 

repository system is a central depot to collect design patterns developed for DoD applications 

such that programmers for DoD applications can easily access and use them for higher 

productivity. The depot could be divided into two areas: one publicly accessible and the other 

restricted. 

 

Domain-specific languages are very helpful in achieving high productivity for programmers. 

The resulting codes are not only much shorter, but also closer to the abstraction level of the 

domain, which results in self-documentation and fewer bugs and opportunities for optimized 

implementation. USC/ISI recommends research on domain-specific languages for DoD 

applications. The research work would investigate DoD application areas that most need 

domain-specific languages; currently the commercial sector has little incentive to invest in 
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such research. Once the domains are identified, domain-specific languages would be 

proposed. Interpreters or compilers would be developed, and the languages and 

interpreters/compilers would be evaluated continuously with feedback from domain experts. 
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List of Symbols, Abbreviations, and Acronyms 
 

ART Adaptive resonance theory 

ASIC Application-specific integrated circuit  

BGA Ball grid array 

CAF Complex ambiguity function 

CMP Chip-level multiprocessing 

CPU Central processing unit 

DDR Double data rate 

DMA Direct memory access 

DoD Department of Defense  

DSL Domain-specific language 

DSP Digital Signal Processor 

FIFO First in first out 

FFT Fast Fourier transformation 

FGPA Filed programmable gate array  

FPU Floating point unit 

GPU Graphic processing unit 

HDL Hardware description language 

HP Hewlett Packard 

IBM International business machine 

I/O Input/output 

ISA Instruction set architecture 

JTAG Joint test action group 

LCD Liquid crystal display 

LED Light emitting diode 

LISP List processing 

MATLAB Matrix laboratory 

McPAT  Multi-core power, area, and timing  

OS Operating system 

PAR Place and route 

PCB Printed circuit board 

PCI Peripheral component interconnect 

PVL Parallel vector library 

RAM Random access memory 

ROM Read only memory 

SLOC Source line of code 

SMP Symmetric multiprocessing 

SPL Signal Processing Language 

SPMD Single program multiple data 

SQL Structured query language 

STAPL Space-time adaptive processing library 

TM Transactional memory 

UPC Unified parallel C 

UE Unit of execution 

USC/ISI University of Southern California / Information Sciences Institute 
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VHDL VHSIC hardware description language 

VHSIC Very high speed integrated circuit 

XAUI X Attachment Unit Interface 


